
A SYSTOLIC ARRAY FOR LINEAR MIMO DETECTION BASED ON AN ALL-SWAP
LATTICE REDUCTION ALGORITHM

Ni-Chun Wang1, Ezio Biglieri2 and Kung Yao1

1Department of Electrical Engineering, University of California Los Angeles, Los Angeles CA,USA

2Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain

ABSTRACT

A systolic array to implement lattice-reduction-aided linear
detection is proposed for a MIMO receiver. The lattice reduction
algorithm and the ensuing linear detections are operated in the
same array, which can be hardware-efficient. All-swap lattice
reduction algorithm (ASLR) is considered for the systolic design.
ASLR is a variant of the LLL algorithm, which processes all lattice
basis vectors within one iteration. Lattice-reduction-aided linear
detection based on ASLR and LLL algorithms have very similar
bit-error-rate performance, while ASLR is more time efficient in
the systolic array, especially for systems with a large number of
antennas.

Index Terms— MIMO receivers, systolic array, lattice
reduction, wireless communications

1. INTRODUCTION

Lattice-reduction-aided detection (LRAD), which combines lattice
reduction techniques with linear detections or successive
spatial-interference cancellation, has been shown to yield some
improvement of error-rate performance [1][2]. In LRAD, the
lattice reduction algorithm need be performed when the channel
changes. If the channel changing rate is high, or a large number of
channel matrices need be processed such as in a MIMO-OFDM
system, a fast-throughput hardware structure is needed for
real-time applications. To this end, we propose a systolic array to
implement the linear LRAD. Systolic array, allowing simple
parallel processing, can achieve higher data rates without the
demand on faster hardware capabilities. Hence, systolic array may
be one of the best solutions for the practical implementation of a
MIMO detector.

In this paper, we consider the LRAD based on all-swap lattice
reduction (ASLR) instead of the most widely used LLL algorithm
[3]. ASLR is a variant of LLL and was first proposed in [5] for real
lattices. A complex-number version ASLR is presented in this
paper. A crucial difference between ASLR and LLL algorithm is
that all lattice basis vectors are simultaneously processed during a
single iteration. Since ASLR was originally designed for parallel
processing, a systolic array running ASLR is on average more
efficient than one running LLL. After lattice reduction, linear
detectors, such as zero-forcing (ZF) and minimum mean-square

The work of N.C. Wang was partially supported by National
Science Council, Taiwan. (TMS-094-2-A-002).

error (MMSE), can also be implemented by the same systolic array
without any extra hardware cost.

The following notations are used throughout the remaining
sections. Capital bold letters denote matrices, and lower case bold
letters denote column vectors. xi,j denotes the (i,j)-entry of the
matrix X . Submatrix (subvector) formed from the ath to bth rows
and mth to nth columns of X is denoted Xa:b,m:n. ()T⋅ , ()H⋅ and

†()⋅ denote transpose, Hermitian transpose, and Moore-Penrose
pseudoinverse of a matrix, respectively. x is the Euclidean
norm of the vector x . x indicates the closest integer to x .

mI and m0 are m m× identity and null matrices, respectively.

2. LATTICE-REDUCTION-AIDED LINEAR
DETECTION

We consider a MIMO system with m transmit and n receive
antennas in a rich-scattering flat-fading channel. Let x be the
transmitted M-QAM signal vector, y the received signal vector
and the n m× channel matrix where the entries are
uncorrelated, zero-mean, unit-variance complex Gaussian fading
gains. The baseband model for this MIMO system is

y = Hx + n , (1)
where n is the white Gaussian noise vector. Additionally, we
assume the channel matrix entries are fixed during each frame
interval, and the receiver has perfect knowledge of the realization
of .

In MIMO detection, the objective of the lattice reduction
algorithm is equivalent to derive a better-conditioned matrix H
along with a unimodular matrix T from the original channel
matrix H under a given criterion such that H = HT [1]. Linear
LRAD is to combine the lattice reduction algorithm with the linear
detection, such as ZF and MMSE. Consider ZF first, and the
estimated signal x̂ can be written as

()† † 1 1ˆ ()()− −= = + = +x H y H HT T x n T x H n† . (2)
Let ˆqx be a version of x̂ quantized elementwise. From (2), it is
clear that ˆqx is an estimate of 1−T x , rather than of x . Hence,
the last step is to transform ˆqx back into an estimate of x , i.e.,
ˆ ˆLR q= ⋅x T x . (2) also applies to MMSE detection if the extended

system model in [1] is considered. Simply substitute, for H and
y , the extended channel matrix and the extended received vector,
respectively. The remaining operations are the same as in ZF.

3. ALL-SWAP LATTICE REDUCTION ALGORITHM

Since ASLR is a variant of the LLL algorithm, we first summarize
the LLL-reduced lattice. Let the n m× matrix H be a set of

2461978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

lattice basis vectors, with QR decomposition (QRD) =H QR .
H is called complex LLL-reduced if the following two conditions
are satisfied [4]:
(a) , , , ,() 1 2 and () 1 2, 1i j i i i j i ir r r r i j mℜ ≤ ℑ ≤ ≤ < ≤ , (3)

(b) 2 2 2
1, 1, 1 , 1, 1 , 2i i i i i i i ir r r r i mδ − − − − −− ≤ ≤ ≤ . (4)

δ is a constant chosen between 1/2 to 1. The process to make the
basis set satisfy (3) is called size reduction (SR).

Table I describes the complex ASLR algorithm. In the
following discussion, we refer to the lines in Table I. One
significant difference between LLL and ASLR is that the pair of
columns k and 1k − with all even (or odd) indices k could
be swapped simultaneously (lines 10 and 13). For systolic arrays,
all these column swaps within one iteration can be done in parallel.
Additionally, unlike the LLL algorithm considered in the literature
[1][4], size reduction process in ASLR applies to all the columns
of H during one iteration (lines 3~8), and we called it “full size
reduction (FSR).” The advantage of FSR over SR in our proposed
systolic array will be shown in Section 4.

Two minor modifications of the original ASLR algorithm are
made to accommodate the systolic array design. First, the Givens
rotation (lines 17~21) is executed before the column swap (line 22).
This is because the Givens rotation process can work in parallel
with FSR, whereas the columns swap cannot. This point will be
made clear in Section 4. Second, the QR decomposition

H =Q H R is considered as the input of the algorithm, instead of
=H QR . From lines 19 and 21, the Givens rotation matrix applies

to the same two rows of HQ and R , which simplifies the design
of the systolic array. Additionally, after LLL, HQ is ready for
calculating †H in the linear detection step.

4. SYSTOLIC ARRAY FOR ASLR ALGORITHM

4.1. Systolic Array for FSR-LLL
In the following, we assume a 4 4× MIMO system and illustrate
the proposed systolic array in three parts: full size reduction,
Givens rotation, and column swap. Prior to the ASLR, QRD of the
channel matrix is needed. In this paper, we assume that the
matrices HQ and R are computed by the systolic array
proposed in [6].

a) Full size reduction: The systolic array for the linear LRAD
is shown in Fig. 1(a). Four different kinds of processing elements
(PE) are used, which are diagonal cells, off-diagonal cells,
vectoring cells, and rotation cells. The operations of these PEs are
shown in Fig. 1(b)(c)(d). The dotted lines represent the logic
control signals transmission between cells, and the solid lines
represent the data transmission. To initialize the processing, each
element of the matrix R , HQ and T (denoted as r, q and t in
Fig. 1(b)(d), respectively) are stored in the PE at the corresponding
position. For example, the off-diagonal elements ,i jq ,i jr and ,i jt
are stored in the cell Oij.

Fig. 2 shows the overall processes of full size reduction during
one iteration. Only diagonal and off-diagonal cells are needed at
this stage. Suppose the cells execute all operations in data mode or
size reduction mode at each time instant. At 0T = , the external
controller sends in the logic control signal “data” to cell D33
through cell D44. At 1T = , cell D33 enters data mode and spreads
out the “data” signal to the neighboring three cells. Meanwhile,
D33 sends out the data (r33,t33)(*) to cell O34. The star (*) indicates

that the data are sent out by a diagonal cell and it drives the
off-diagonal cell to compute μ . As a result, at 2T = cell O34
computes μ , and sends it out to the two neighboring cells O24 and
D44 for the updating operations at the next time instant. At 3T = ,
cell O23 is driven into size reduction mode by the incoming data
(r22,t22)(*). A crucial point here is that cell O23 also propagates the
data (r22,t22)(*) to cell O24, and thus starts the column operations
between column 2 and 4 at 4T = . Essentially, full size reduction
is a series of column operations between column j and all the
columns prior to j. In general, all column operations on column j
in m m× MIMO system end at 2 3T m j= + − in cell Omj. The
full size reduction stops at 3 3T m= − , when all updates on column
m are done.

When using systolic array, the advantage of FSR over SR can
be shown by the following example. Suppose no column swap is
necessary after H is size-reduced. In ASLR, no further
processing is needed after FSR. Hence, the systolic array takes a
total of 3 3m − cycles to end the all processes. However, with SR
the process will end until columns 2 to m are sequentially
size-reduced and it takes 2 (2 3)m

j m j= + − 22.5 4.5 2m m= − + cycles
to end the LLL algorithm. As m increases, the advantage of FSR
over SR becomes significant in this case.

b) Givens rotation: In line 10 or 13 of Table I, if there exists
any k such that δ − | 1, 1, 1k k k kr r− − − |2 > | ,k kr |2/| 1, 1k kr − − |2, then ASLR
proceeds to the Givens-rotation step. To simplify this condition
check in the systolic array, we use a variant of (4) for a reduced
lattice, 2 2

, 1, 11 2 | | | |k k k kr r − −≤ [8]. Since the condition check now
only relates two r elements in the neighboring diagonal cells, it
can be checked in parallel with the FSR step. For example, in Fig.
2 at 1T = , cell D33 sends data 3,3r to cell D22 along with the
“data” signal and cell D22 will compute | 3,3r |2/| 2,2r |2 at 2T = . If
1/2>| ,k kr |2/| 1, 1k kr − − |2, then the logic control signal “swap” is set to
“true”, and thus drives the vectoring cell to work. The vectoring
cells and rotation cells perform the Givens rotation to the same two
rows of R and HQ . In order to make R still an upper

TABLE I ALL SWAP LATTICE REDUCTION ALGORITHM
 ; ,

(1) Initialization ; =EVEN
(2) While (any swap is possible in lines (10) or (13))
(3) for , , 2
(4) for

H H H

m

INPUT OUTPUT
order

j m

= =

=

Q , R Q Q , R R T
T=I

full size reduction

, , ,

1: , 1: , , 1: , 1: , 1: , , 1: ,

-1, ,1
(5)
(6) : ; :
(7) end
(8) end
(9) If =EVEN
(10) Execute (#) for all eve

i j i j i i

i j i j i j i i m j m j i j m i

i j
r r

order

μ
μ μ

=
=

= − = −R R R T T T

2 2 2
1, 1, 1 , 1, 1

1,

n
 between 2~ such that
(11) ODD
(12) else
(13) Execute (#) for all odd
 between 2~ such that

k k k k k k k k

k k

k
m r r r r

order

k
m r

δ

δ

− − − − −

−

− >
=

−

()

2 2 2
1, 1 , 1, 1

1
1, 1,

1

-1: , 1: 1 1: , 1: -1: ,1: 1

(14) EVEN
(15) end
(16) end

(17) tan () ()
0(18) 0 1

(19) : , :

k k k k k k

k k k k
j

H
k k k m k k k m k k n

r r r
order

r r
e φ

φ

− − − −

−
− −

−

− − −

>
=

= ℑ ℜ
=

= ⋅ = ⋅
G Givens Rotation
R G R Q G Q

()
1: ,1:

1
, -1, 2

-1: , 1: 2 1: , 1: -1: ,1: 2 1: ,1:

cos sin(20) tan , sin cos
(21) : , :
(22) Swap columns -1 and in and

H
k k n

k k k k

H H
k k k m k k k m k k n k k n

r r

k k

θ θθ θ θ

−

−

− − − −

= = −
= ⋅ = ⋅

G
R G R Q G Q

R T Column Swap

(#)

2462

triangular matrix after column swap, the vectoring cell annihilates
the data ,k kr by the Givens rotation matrix ()G Θ with the
rotation angle (,)φ θΘ = (lines 17 and 20 in Table I). The
rotation cell simply rotates the input data with the angle given by
the neighboring cell. Hence, the vectoring and rotation cells also
work in a systolic way, with the rotation angle Θ propagating
between cells. Note all diagonal cells could generate the “swap”
signal during the FSR step. Therefore, there is a “switch”, which is
managed by the external controller, between each pair of the
diagonal cell and the vectoring cell. If the current value of “order”
is even (odd), then the “switch” between each cell 1, 1k kD − − with
even (odd) index k and the vectoring cell is turned on by the
external controller. Consequently, for every even (odd) index k ,
Givens rotation between rows 1k − and k could be executed if
needed.

Additionally, a Givens rotation on rows k and 1k − can
begin right after 1,k kr − is updated during FSR without any
interference to the remaining operations of FSR. This way, the
time necessary to perform Givens rotations can be hidden by the
FSR and this is the reason why we want the Givens rotation to
occur prior to column swap in our design.

c) Column swap: If columns k and 1k − of R (and T)
should be swapped, the external controller will send command
signals from the top cells of columns k and 1k − in order to
force the swapping data. The command signals propagate vertically
downward along these columns. More than one pair of columns
could be swapped during one iteration, but all these pairs are
swapped in parallel. Hence, the time spent on columns swap is the
same as on swapping a single pair of columns. The external
controller can send in the command signals after full size reduction
and Givens rotation are ended. However, it is still possible that the
column swap be partially overlapped in time with size reduction
and Givens rotation.

Note that in our description we limit the applications of this
systolic array only to m m× MIMO systems. For m m×
MMSE-LRAD, although HQ for the extended channel matrix is

an 2m m× matrix, we can store each element of the two squared
submatrices 1: ,1:

H
m mQ and 1: ,(1):2

H
m m m+Q in the PE at the corresponding

position. Namely, ,i jq and ,i j mq + should be stored in the same PE,
which still keeps the systolic array squared.

4.2. Comparison between LLL and ASLR
First, we compare the two algorithms in terms of bit-error-rate
(BER) performance. In our simulation, 4-QAM is assumed for the
transmitted symbols. Fig. 3(a) shows the BER results of
MMSE-LRAD based on LLL and ASLR algorithm (denoted as
MMSE-LLL and MMSE-ASLR, respectively). The two algorithms
lead to almost the same results in all three MIMO systems. Hence,
we can conclude that despite LLL and ASLR give different lattice
reduced matrices, the linear LRAD based on these two algorithms
have similar BER performance.

Next, we compare the efficiency of the systolic array for both
algorithms in terms of the average number of column swaps in the
overall process. Less column swapping implies less iterations, and
thus less cycles in the systolic array. Fig. 3(b) shows the average
number of column swaps in LLL and ASLR algorithms of the
MMSE-LRAD. For ASLR, we count all the columns swaps during
one iteration as only one swap since they are executed in parallel.
As the number of antennas grows, the advantage of ASLR
becomes significant. In 4 4× MIMO, the difference between two
algorithms is no more than 0.5. However, in a 16 16× MIMO
system, MMSE-ASLR has less than 62% of the column swaps
comparing to MMSE-LLL when 0/bE N is above 10dB. Based on
BER performance and time-efficiency comparisons, ASLR should
be a better algorithm to be applied on our systolic array, especially
with a large number of antennas.

5. SYSTOLIC ARRAY FOR LINEAR DETECTION

The linear-detection processes described in Section 2 can also be
operated on the systolic array in Fig. 1(a). Consider the ZF
detection first. To execute † 1ˆ H−= =x H y R Q y in the systolic array,
we separate it into two matrix--vector multiplications H=v Q y

D44

O13O12

O21 O23

O14

O24

D11

D22

O31 O32 O34D33

O41 O42 O43 D44

O13O12

O21 O23

O14

O24

D11

D22

O31 O32 O34D33

O41 O42 O43

 (,);

 If carries "*":
 /
 : - , : -
 ;
 If doesn't carry "*":

in

out out in

in

in

in in

out out in

in

(If c ="data")
x r t c c

(Default)
x

r x
r r x t t x
y x x

x

μ
μ μ
μ

= =

=
= ⋅ = ⋅

= =

Data mode

Size Reduction mode

 : , :
 ;

in in in in

out outin in

r r y x t t y x
y y x x

= − ⋅ = − ⋅
= =Off-diagonal cell Oij

q, t, r
inx outx

outc

inc inyouty

outy

(a) (b)
swap

Θ

α′

β 0

Θ

vectoring cell

rotation cell

inΘ outΘ

If " "

()
0

swap true

G
αα
β

=
′ = Θ

()in

out in

G
αα
ββ

′ = Θ
′

Θ = Θ

α

α′α

β ′β

(*)

2 2 1
2

 " "
 ; (,)

"true", if =
"false",

 := - ; ,

in

out out

out out

in

out outin in in in

If m ="data"
m c data
d r x r t

d rswap
otherwise

(Default)
t t y x y y x x

= =
= =

<

⋅ = =

Data mode

Size Reduction mode

 ()

Diagonal cell Dii
inm

i nyoutc

q, t, rinx outx

ind

outd

outyoutc

swap

outm

inm

i nyoutc

q, t, rinx outx

ind

outd

outyoutc

swap

outm

(c) (d)
Fig. 1. (a) The systolic array for the linear LRAD of 4 4× MIMO system.
(b)(c)(d) The operations of all processing elements.

T=0 T=1

*

 T=2

*

 T=3

*

*

T=4

*

 T=5

*

 T=6 T=7

T=8 T=9

* (*)(,)ii iir t
(,)ij ijr t

" "data
μ

Data mode
Size Reduction mode

T=9
Fig. 2. Flow chart of the FSR operations in the systolic array.

2463

and then 1ˆ −=x R v . Since HQ stays in the systolic arrays after
the lattice reduction ends, the received signal vector y can be fed
to the systolic arrays from the top in a skewed manner as shown in
Fig. 4(a). The vector HQ y is pumped out from the rightmost
column of the array. The operations of the cells are shown in Fig.
4(d). Every cell performs the multiply-and-add operation. If
MMSE is chosen, the input vector should be changed to an 2 1m ×
extended received vector y . Let []1 2

TT T=y y y and []1 2
H =Q Q Q ,

where 1y , 2y are 1m× vectors and 1Q , 2Q are m m×
matrices. As mentioned in Section 4.1, the elements of 1Q and

2Q are stored in the same PEs. To compute H=v Q y using the
systolic array, first we let 1y enter the array from the top and
multiply it by 1Q , which is the same as shown in Fig. 4(a). Then

2y enters the array right after 1y also in a skewed manner, and is
multiplied by 2Q . Hence, for MMSE we need an extra operation
at the output of the array, which is 1 1 2 2= +v Q y Q y . For the
remaining operations in the systolic array, there is no difference
between ZF and MMSE detection.

The second stage consists of computing 1ˆ −=x R v . Instead of
computing 1−R directly, the following recurrence equation [7] is
considered for the systolic design

1

 : from to 1
1ˆ ˆ ,

m

j j ji i
jj i j

j mx v r x
r = +

= − . (5)

According to (5), it is clear that 1−R v can be computed directly
from the components of R . As shown in Fig. 4(b), the vector v
enters the array from the right, and 1ˆ −=x R v is computed by the
upper-triangular array with cell operations shown in Fig. 4(e). The
output vector x̂ is then quantized elementwise outside the
systolic array. The final step consists of multiplying the quantized
vector ˆqx by the unimodular matrix T , which is very similar to
the operations of H=v Q y . Hence, the data flow in Fig. 4(c) is the
same as Fig. 4(a). The cell operations for ˆ ˆLR q= ⋅x T x are shown
in Fig. 4(d), and ˆLRx is the final result of the linear LRAD.

In sum, there are one addition, one multiplication, and one
division in each diagonal cell, and one addition and one
multiplication in each off-diagonal cell for linear detection, be it
ZF or MMSE. These operations are also contained in each cell at
the LLL lattice reduction stage. Hence, there can be no extra
hardware cost (adders or multipliers) in each cell for linear
detection. Only extra control logic to the array is needed in order to
have each PE work correctly in different modes.

6. CONCLUSION

In this paper, we proposed a systolic array to perform
lattice-reduction-aided linear detection for MIMO receivers. The
design is based on all-swap complex lattice-reduction algorithm,
which generalizes the one originally proposed in [5] for real
lattices. Compared to LLL algorithm, ASLR operates on a whole
matrix, rather than on its single columns, during the column-swap
and Givens-rotation steps. The linear detection can also be
implemented on the same systolic array for the ASLR. Due to the
high-throughput property of systolic arrays, our design appears
very promising for high-data-rate systems, such as in a
MIMO-OFDM system.

7. REFERENCES

[1] D. Wübben, R. Böhnke, V. Kühn and K.-D. Kammeyer,

“Near-maximum-likelihood detection of MIMO systems using
MMSE-based lattice reduction”, Proc. ICC, pp. 798-802, 2004.

[2] H. Yao and G.W. Wornell, “Lattice-reduction-aided detectors
for MIMO communication systems”, Proc. GLOBECOM, pp.
424-428, 2002.

[3] A. K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, “Factoring
polynomials with rational coefficients,” Math. Annalen, vol. 261,
pp. 515-534, 1982.

[4] Y. H. Gan and H. W. Mow, “Complex lattice reduction
algorithms for low-complexity MIMO detection,” Proc.
GLOBECOM, pp. 2953-2957, 2005.

[5] C. Heckler and L. Thiele, “A parallel lattice basis reduction
for mesh-connected processor arrays and parallel complexity,”
Proc. IPDPS, pp.400-407, 1993.

[6] A. El-Amawy amd K.R. Dharmarajan, “Parallel VLSI
algorithm for stable inversion of dense matrices,” in Proc.
Computers and Digital Techniques, vol. 136, pp. 575-580, 1989.

[7] F. Lorenzelli, P.C. Hansen, T.F. Chan, and K. Yao, “A
systolic implementation of the Chan/Foster RRQR algorithm,”
IEEE Trans. on Signal Processing, pp. 2205-2208, 1994.

[8] L. Babai, “On Lovász’ lattice reduction and the nearest lattice
point problem,” Combinatorica, vol. 6, no. 1, pp. 1-13, 1986.

0 5 10 15 20 25 30
10

-5

10-4

10-3

10-2

10-1

100

Eb/N0(dB)

B
it-

E
rro

r-R
at

e
(B

E
R

)

MMSE-FSR
MMSE-ASLR
MMSE
ML

4x4

4x4

8x8 16x16

16x168x8

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

10

11

Eb/N0(dB)

A
ve

ra
ge

 n
um

be
r o

f c
ol

um
n

sw
ap

LLL(4x4)
ASLR(4X4)
LLL(8X8)
ASLR(8X8)
LLL(16X16)
ASLR(16X16)

(a) (b)
Fig. 3. (a) BER performance of LLL- and ASLR- based MMSE-LRAD. (b)
The average number of column swaps in LLL and ASLR algorithms when
performing MMSE LRAD.

y1

y2

y3

y4

y1

y2

y3

y4

y

v4

v3

v2

v1

v4

v3

v2

v1

H=v Q y

v

x̂

v4

v3

v2

v1

v4

v3

v2

v1

v

1x̂

1ˆ −=x R v
2x̂

3x̂
4x̂

ˆ qx

ˆ LRx

1ˆqx

1ˆLRx

ˆ ˆLR q= ⋅x T x2ˆqx
3ˆqx

4ˆqx

2ˆLRx

3ˆLRx

4ˆLRx

(a) (b) (c)

Diagonal cell Dii Off-diagonal cell Oij

q, t, r
inx outx

iny

outy

q, t, rq, t, r
inx outx

iny

outy

q, t, rinx outx
iny

outy

q, t, rq, t, rinx outx
iny

outy

diagonal and off-diagonal cellsoperation diagonal and off-diagonal cellsoperation

H=v Q y

ˆ ˆ qLR = ⋅x T x

; out outin in inx x q y y y= + ⋅ =

; out outin in inx x t y y y= + ⋅ =

q, t, rq, t, r inx

Diagonal cell Dii

q, t, rq, t, r

Off-diagonal cell Oij

inxoutx

iny

outy outy

diagonal cell off-diagonal celloperation diagonal cell off-diagonal celloperation

1ˆ −=x R v out in in

out in

x x r y
y y

= − ⋅
=out iny y r=

(d) (e)
Fig. 4. The linear detection operations for (a) H=v Q y (b) 1ˆ −=x R v
(c) ˆ ˆLR q= ⋅x T x in the systolic array. (d)(e) The operations of the diagonal
and off-diagonal cells in the systolic array at different stages.

2464

