
A SYSTOLIC ARRAY FOR LINEAR MIMO DETECTION BASED ON AN ALL-SWAP 
LATTICE REDUCTION ALGORITHM 

 
Ni-Chun Wang1, Ezio Biglieri2 and Kung Yao1 

 
1Department of Electrical Engineering, University of California Los Angeles, Los Angeles CA,USA 

2Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain 
 

ABSTRACT 
 
A systolic array to implement lattice-reduction-aided linear 
detection is proposed for a MIMO receiver. The lattice reduction 
algorithm and the ensuing linear detections are operated in the 
same array, which can be hardware-efficient. All-swap lattice 
reduction algorithm (ASLR) is considered for the systolic design. 
ASLR is a variant of the LLL algorithm, which processes all lattice 
basis vectors within one iteration. Lattice-reduction-aided linear 
detection based on ASLR and LLL algorithms have very similar 
bit-error-rate performance, while ASLR is more time efficient in 
the systolic array, especially for systems with a large number of 
antennas. 
 

Index Terms— MIMO receivers, systolic array, lattice 
reduction, wireless communications 
  

1. INTRODUCTION 
 
Lattice-reduction-aided detection (LRAD), which combines lattice 
reduction techniques with linear detections or successive 
spatial-interference cancellation, has been shown to yield some 
improvement of error-rate performance [1][2]. In LRAD, the 
lattice reduction algorithm need be performed when the channel 
changes. If the channel changing rate is high, or a large number of 
channel matrices need be processed such as in a MIMO-OFDM 
system, a fast-throughput hardware structure is needed for 
real-time applications. To this end, we propose a systolic array to 
implement the linear LRAD. Systolic array, allowing simple 
parallel processing, can achieve higher data rates without the 
demand on faster hardware capabilities. Hence, systolic array may 
be one of the best solutions for the practical implementation of a 
MIMO detector. 

In this paper, we consider the LRAD based on all-swap lattice 
reduction (ASLR) instead of the most widely used LLL algorithm 
[3]. ASLR is a variant of LLL and was first proposed in [5] for real 
lattices. A complex-number version ASLR is presented in this 
paper. A crucial difference between ASLR and LLL algorithm is 
that all lattice basis vectors are simultaneously processed during a 
single iteration. Since ASLR was originally designed for parallel 
processing, a systolic array running ASLR is on average more 
efficient than one running LLL. After lattice reduction, linear 
detectors, such as zero-forcing (ZF) and minimum mean-square 
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error (MMSE), can also be implemented by the same systolic array 
without any extra hardware cost. 

The following notations are used throughout the remaining 
sections. Capital bold letters denote matrices, and lower case bold 
letters denote column vectors. xi,j denotes the (i,j)-entry of the 
matrix X . Submatrix (subvector) formed from the ath to bth rows 
and mth to nth columns of X  is denoted Xa:b,m:n. ( )T⋅ , ( )H⋅  and 

†( )⋅  denote transpose, Hermitian transpose, and Moore-Penrose 
pseudoinverse of a matrix, respectively. x  is the Euclidean 
norm of the vector x . x  indicates the closest integer to x . 

mI  and m0  are m m×  identity and null matrices, respectively. 
 

2. LATTICE-REDUCTION-AIDED LINEAR 
DETECTION 

 
We consider a MIMO system with m  transmit and n  receive 
antennas in a rich-scattering flat-fading channel. Let x  be the 
transmitted M-QAM signal vector, y  the received signal vector 
and  the n m×  channel matrix where the entries are 
uncorrelated, zero-mean, unit-variance complex Gaussian fading 
gains. The baseband model for this MIMO system is  

y = Hx + n , (1) 
where n  is the white Gaussian noise vector. Additionally, we 
assume the channel matrix entries are fixed during each frame 
interval, and the receiver has perfect knowledge of the realization 
of . 

In MIMO detection, the objective of the lattice reduction 
algorithm is equivalent to derive a better-conditioned matrix H  
along with a unimodular matrix T  from the original channel 
matrix H  under a given criterion such that H = HT  [1]. Linear 
LRAD is to combine the lattice reduction algorithm with the linear 
detection, such as ZF and MMSE. Consider ZF first, and the 
estimated signal x̂  can be written as  

( )† † 1 1ˆ ( )( )− −= = + = +x H y H HT T x n T x H n† . (2) 
Let ˆqx  be a version of x̂  quantized elementwise. From (2), it is 
clear that ˆqx  is an estimate of 1−T x , rather than of x . Hence, 
the last step is to transform ˆqx  back into an estimate of x , i.e., 
ˆ ˆLR q= ⋅x T x . (2) also applies to MMSE detection if the extended 

system model in [1] is considered. Simply substitute, for H  and 
y , the extended channel matrix and the extended received vector, 
respectively. The remaining operations are the same as in ZF. 
 
3. ALL-SWAP LATTICE REDUCTION ALGORITHM 

 
Since ASLR is a variant of the LLL algorithm, we first summarize 
the LLL-reduced lattice. Let the n m×  matrix H  be a set of 
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lattice basis vectors, with QR decomposition (QRD) =H QR . 
H  is called complex LLL-reduced if the following two conditions 
are satisfied [4]: 
(a) , , , ,( ) 1 2  and  ( ) 1 2,  1i j i i i j i ir r r r i j mℜ ≤ ℑ ≤ ≤ < ≤ , (3) 

(b) 2 2 2
1, 1, 1 , 1, 1 ,  2i i i i i i i ir r r r i mδ − − − − −− ≤ ≤ ≤ . (4) 

δ  is a constant chosen between 1/2 to 1. The process to make the 
basis set satisfy (3) is called size reduction (SR). 

Table I describes the complex ASLR algorithm. In the 
following discussion, we refer to the lines in Table I. One 
significant difference between LLL and ASLR is that the pair of 
columns k  and 1k −  with all even (or odd) indices k  could 
be swapped simultaneously (lines 10 and 13). For systolic arrays, 
all these column swaps within one iteration can be done in parallel. 
Additionally, unlike the LLL algorithm considered in the literature 
[1][4], size reduction process in ASLR applies to all the columns 
of H  during one iteration (lines 3~8), and we called it “full size 
reduction (FSR).” The advantage of FSR over SR in our proposed 
systolic array will be shown in Section 4. 

Two minor modifications of the original ASLR algorithm are 
made to accommodate the systolic array design. First, the Givens 
rotation (lines 17~21) is executed before the column swap (line 22). 
This is because the Givens rotation process can work in parallel 
with FSR, whereas the columns swap cannot. This point will be 
made clear in Section 4. Second, the QR decomposition 

H =Q H R  is considered as the input of the algorithm, instead of 
=H QR . From lines 19 and 21, the Givens rotation matrix applies 

to the same two rows of HQ  and R , which simplifies the design 
of the systolic array. Additionally, after LLL, HQ  is ready for 
calculating †H  in the linear detection step. 
 

4. SYSTOLIC ARRAY FOR ASLR ALGORITHM 
 
4.1. Systolic Array for FSR-LLL 
In the following, we assume a 4 4×  MIMO system and illustrate 
the proposed systolic array in three parts: full size reduction, 
Givens rotation, and column swap. Prior to the ASLR, QRD of the 
channel matrix is needed. In this paper, we assume that the 
matrices HQ  and R  are computed by the systolic array 
proposed in [6]. 

a) Full size reduction: The systolic array for the linear LRAD 
is shown in Fig. 1(a). Four different kinds of processing elements 
(PE) are used, which are diagonal cells, off-diagonal cells, 
vectoring cells, and rotation cells. The operations of these PEs are 
shown in Fig. 1(b)(c)(d). The dotted lines represent the logic 
control signals transmission between cells, and the solid lines 
represent the data transmission. To initialize the processing, each 
element of the matrix R , HQ  and T  (denoted as r, q and t in 
Fig. 1(b)(d), respectively) are stored in the PE at the corresponding 
position. For example, the off-diagonal elements ,i jq  ,i jr  and ,i jt  
are stored in the cell Oij. 

Fig. 2 shows the overall processes of full size reduction during 
one iteration. Only diagonal and off-diagonal cells are needed at 
this stage. Suppose the cells execute all operations in data mode or 
size reduction mode at each time instant. At 0T = , the external 
controller sends in the logic control signal “data” to cell D33 
through cell D44. At 1T = , cell D33 enters data mode and spreads 
out the “data” signal to the neighboring three cells. Meanwhile, 
D33 sends out the data (r33,t33)(*) to cell O34. The star (*) indicates 

that the data are sent out by a diagonal cell and it drives the 
off-diagonal cell to compute μ . As a result, at 2T =  cell O34 
computes μ , and sends it out to the two neighboring cells O24 and 
D44 for the updating operations at the next time instant. At 3T = , 
cell O23 is driven into size reduction mode by the incoming data 
(r22,t22)(*). A crucial point here is that cell O23 also propagates the 
data (r22,t22)(*) to cell O24, and thus starts the column operations 
between column 2 and 4 at 4T = . Essentially, full size reduction 
is a series of column operations between column j and all the 
columns prior to j. In general, all column operations on column j  
in m m×  MIMO system end at 2 3T m j= + −  in cell Omj. The 
full size reduction stops at 3 3T m= − , when all updates on column 
m  are done. 

When using systolic array, the advantage of FSR over SR can 
be shown by the following example. Suppose no column swap is 
necessary after H  is size-reduced. In ASLR, no further 
processing is needed after FSR. Hence, the systolic array takes a 
total of 3 3m −  cycles to end the all processes. However, with SR 
the process will end until columns 2 to m  are sequentially 
size-reduced and it takes 2 (2 3)m

j m j= + − 22.5 4.5 2m m= − +  cycles 
to end the LLL algorithm. As m  increases, the advantage of FSR 
over SR becomes significant in this case. 

b) Givens rotation: In line 10 or 13 of Table I, if there exists 
any k  such that δ − | 1, 1, 1k k k kr r− − − |2 > | ,k kr |2/| 1, 1k kr − − |2, then ASLR 
proceeds to the Givens-rotation step. To simplify this condition 
check in the systolic array, we use a variant of (4) for a reduced 
lattice, 2 2

, 1, 11 2 | | | |k k k kr r − −≤ [8]. Since the condition check now 
only relates two r  elements in the neighboring diagonal cells, it 
can be checked in parallel with the FSR step. For example, in Fig. 
2 at 1T = , cell D33 sends data 3,3r  to cell D22 along with the 
“data” signal and cell D22 will compute | 3,3r |2/| 2,2r |2 at 2T = . If 
1/2>| ,k kr |2/| 1, 1k kr − − |2, then the logic control signal “swap” is set to 
“true”, and thus drives the vectoring cell to work. The vectoring 
cells and rotation cells perform the Givens rotation to the same two 
rows of R  and HQ . In order to make R  still an upper 

TABLE I  ALL SWAP LATTICE REDUCTION ALGORITHM 
  ;     ,  
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triangular matrix after column swap, the vectoring cell annihilates 
the data ,k kr  by the Givens rotation matrix ( )G Θ  with the 
rotation angle ( , )φ θΘ =  (lines 17 and 20 in Table I). The 
rotation cell simply rotates the input data with the angle given by 
the neighboring cell. Hence, the vectoring and rotation cells also 
work in a systolic way, with the rotation angle Θ  propagating 
between cells. Note all diagonal cells could generate the “swap” 
signal during the FSR step. Therefore, there is a “switch”, which is 
managed by the external controller, between each pair of the 
diagonal cell and the vectoring cell. If the current value of “order” 
is even (odd), then the “switch” between each cell 1, 1k kD − −  with 
even (odd) index k  and the vectoring cell is turned on by the 
external controller. Consequently, for every even (odd) index k , 
Givens rotation between rows 1k −  and k  could be executed if 
needed. 

Additionally, a Givens rotation on rows k  and 1k −  can 
begin right after 1,k kr −  is updated during FSR without any 
interference to the remaining operations of FSR. This way, the 
time necessary to perform Givens rotations can be hidden by the 
FSR and this is the reason why we want the Givens rotation to 
occur prior to column swap in our design. 

c) Column swap: If columns k  and 1k −  of R  (and T ) 
should be swapped, the external controller will send command 
signals from the top cells of columns k  and 1k −  in order to 
force the swapping data. The command signals propagate vertically 
downward along these columns. More than one pair of columns 
could be swapped during one iteration, but all these pairs are 
swapped in parallel. Hence, the time spent on columns swap is the 
same as on swapping a single pair of columns. The external 
controller can send in the command signals after full size reduction 
and Givens rotation are ended. However, it is still possible that the 
column swap be partially overlapped in time with size reduction 
and Givens rotation. 

Note that in our description we limit the applications of this 
systolic array only to m m×  MIMO systems. For m m×  
MMSE-LRAD, although HQ  for the extended channel matrix is 

an 2m m×  matrix, we can store each element of the two squared 
submatrices 1: ,1:

H
m mQ  and 1: ,( 1):2

H
m m m+Q  in the PE at the corresponding 

position. Namely, ,i jq  and ,i j mq +  should be stored in the same PE, 
which still keeps the systolic array squared. 

 
4.2. Comparison between LLL and ASLR 
First, we compare the two algorithms in terms of bit-error-rate 
(BER) performance. In our simulation, 4-QAM is assumed for the 
transmitted symbols. Fig. 3(a) shows the BER results of 
MMSE-LRAD based on LLL and ASLR algorithm (denoted as 
MMSE-LLL and MMSE-ASLR, respectively). The two algorithms 
lead to almost the same results in all three MIMO systems. Hence, 
we can conclude that despite LLL and ASLR give different lattice 
reduced matrices, the linear LRAD based on these two algorithms 
have similar BER performance. 

Next, we compare the efficiency of the systolic array for both 
algorithms in terms of the average number of column swaps in the 
overall process. Less column swapping implies less iterations, and 
thus less cycles in the systolic array. Fig. 3(b) shows the average 
number of column swaps in LLL and ASLR algorithms of the 
MMSE-LRAD. For ASLR, we count all the columns swaps during 
one iteration as only one swap since they are executed in parallel. 
As the number of antennas grows, the advantage of ASLR 
becomes significant. In 4 4×  MIMO, the difference between two 
algorithms is no more than 0.5. However, in a 16 16×  MIMO 
system, MMSE-ASLR has less than 62% of the column swaps 
comparing to MMSE-LLL when 0/bE N  is above 10dB. Based on 
BER performance and time-efficiency comparisons, ASLR should 
be a better algorithm to be applied on our systolic array, especially 
with a large number of antennas. 

 
5. SYSTOLIC ARRAY FOR LINEAR DETECTION 

 
The linear-detection processes described in Section 2 can also be 
operated on the systolic array in Fig. 1(a). Consider the ZF 
detection first. To execute † 1ˆ H−= =x H y R Q y  in the systolic array, 
we separate it into two matrix--vector multiplications H=v Q y  
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Fig. 1.  (a) The systolic array for the linear LRAD of 4 4× MIMO system. 
(b)(c)(d) The operations of all processing elements. 
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and then 1ˆ −=x R v . Since HQ  stays in the systolic arrays after 
the lattice reduction ends, the received signal vector y  can be fed 
to the systolic arrays from the top in a skewed manner as shown in 
Fig. 4(a). The vector HQ y  is pumped out from the rightmost 
column of the array. The operations of the cells are shown in Fig. 
4(d). Every cell performs the multiply-and-add operation. If 
MMSE is chosen, the input vector should be changed to an 2 1m ×  
extended received vector y . Let [ ]1 2

TT T=y y y  and [ ]1 2
H =Q Q Q , 

where 1y , 2y  are 1m×  vectors and 1Q , 2Q  are m m×  
matrices. As mentioned in Section 4.1, the elements of 1Q  and 

2Q  are stored in the same PEs. To compute H=v Q y  using the 
systolic array, first we let 1y  enter the array from the top and 
multiply it by 1Q , which is the same as shown in Fig. 4(a). Then 

2y  enters the array right after 1y  also in a skewed manner, and is 
multiplied by 2Q . Hence, for MMSE we need an extra operation 
at the output of the array, which is 1 1 2 2= +v Q y Q y . For the 
remaining operations in the systolic array, there is no difference 
between ZF and MMSE detection. 

The second stage consists of computing 1ˆ −=x R v . Instead of 
computing 1−R  directly, the following recurrence equation [7] is 
considered for the systolic design 

1

 : from  to 1
1ˆ ˆ ,   

m

j j ji i
jj i j

j mx v r x
r = +

= − . (5) 

According to (5), it is clear that 1−R v  can be computed directly 
from the components of R . As shown in Fig. 4(b), the vector v  
enters the array from the right, and 1ˆ −=x R v  is computed by the 
upper-triangular array with cell operations shown in Fig. 4(e). The 
output vector x̂  is then quantized elementwise outside the 
systolic array. The final step consists of multiplying the quantized 
vector ˆqx  by the unimodular matrix T , which is very similar to 
the operations of H=v Q y . Hence, the data flow in Fig. 4(c) is the 
same as Fig. 4(a). The cell operations for ˆ ˆLR q= ⋅x T x  are shown 
in Fig. 4(d), and ˆLRx  is the final result of the linear LRAD. 

In sum, there are one addition, one multiplication, and one 
division in each diagonal cell, and one addition and one 
multiplication in each off-diagonal cell for linear detection, be it 
ZF or MMSE. These operations are also contained in each cell at 
the LLL lattice reduction stage. Hence, there can be no extra 
hardware cost (adders or multipliers) in each cell for linear 
detection. Only extra control logic to the array is needed in order to 
have each PE work correctly in different modes. 

 
6. CONCLUSION 

 

In this paper, we proposed a systolic array to perform 
lattice-reduction-aided linear detection for MIMO receivers. The 
design is based on all-swap complex lattice-reduction algorithm, 
which generalizes the one originally proposed in [5] for real 
lattices. Compared to LLL algorithm, ASLR operates on a whole 
matrix, rather than on its single columns, during the column-swap 
and Givens-rotation steps. The linear detection can also be 
implemented on the same systolic array for the ASLR. Due to the 
high-throughput property of systolic arrays, our design appears 
very promising for high-data-rate systems, such as in a 
MIMO-OFDM system. 

 
7. REFERENCES 

 
[1] D. Wübben, R. Böhnke, V. Kühn and K.-D. Kammeyer, 

“Near-maximum-likelihood detection of MIMO systems using 
MMSE-based lattice reduction”, Proc. ICC, pp. 798-802, 2004. 

[2] H. Yao and G.W. Wornell, “Lattice-reduction-aided detectors 
for MIMO communication systems”, Proc. GLOBECOM, pp. 
424-428, 2002. 

[3] A. K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, “Factoring 
polynomials with rational coefficients,” Math. Annalen, vol. 261, 
pp. 515-534, 1982. 

[4] Y. H. Gan and H. W. Mow, “Complex lattice reduction 
algorithms for low-complexity MIMO detection,” Proc. 
GLOBECOM, pp. 2953-2957, 2005. 

[5] C. Heckler and L. Thiele, “A parallel lattice basis reduction 
for mesh-connected processor arrays and parallel complexity,” 
Proc. IPDPS, pp.400-407, 1993. 

[6] A. El-Amawy amd K.R. Dharmarajan, “Parallel VLSI 
algorithm for stable inversion of dense matrices,” in Proc. 
Computers and Digital Techniques, vol. 136, pp. 575-580, 1989. 

[7] F. Lorenzelli, P.C. Hansen, T.F. Chan, and K. Yao, “A 
systolic implementation of the Chan/Foster RRQR algorithm,” 
IEEE Trans. on Signal Processing, pp. 2205-2208, 1994.  

[8] L. Babai, “On Lovász’ lattice reduction and the nearest lattice 
point problem,” Combinatorica, vol. 6, no. 1, pp. 1-13, 1986. 

0 5 10 15 20 25 30
10

-5

10-4

10-3

10-2

10-1

100

Eb/N0(dB)

B
it-

E
rro

r-R
at

e 
(B

E
R

)

 

 

MMSE-FSR
MMSE-ASLR
MMSE
ML

4x4

4x4

8x8 16x16

16x168x8

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

10

11

Eb/N0(dB)

A
ve

ra
ge

 n
um

be
r o

f c
ol

um
n 

sw
ap

 

 

LLL(4x4)
ASLR(4X4)
LLL(8X8)
ASLR(8X8)
LLL(16X16)
ASLR(16X16)

(a)                        (b) 
Fig. 3.  (a) BER performance of LLL- and ASLR- based MMSE-LRAD. (b) 
The average number of column swaps in LLL and ASLR algorithms when 
performing MMSE LRAD. 

y1

y2

y3

y4

y1

y2

y3

y4

y

v4

v3

v2

v1

v4

v3

v2

v1

H=v Q y

v

x̂

v4

v3

v2

v1

v4

v3

v2

v1

v

1x̂

1ˆ −=x R v
2x̂

3x̂
4x̂

ˆ qx

ˆ LRx

1ˆqx

1ˆLRx

ˆ ˆLR q= ⋅x T x2ˆqx
3ˆqx

4ˆqx

2ˆLRx

3ˆLRx

4ˆLRx

(a)               (b)               (c) 

Diagonal cell Dii Off-diagonal cell Oij

q, t, r
inx outx

iny

outy

q, t, rq, t, r
inx outx

iny

outy

q, t, rinx outx
iny

outy

q, t, rq, t, rinx outx
iny

outy

diagonal and off-diagonal cellsoperation diagonal and off-diagonal cellsoperation

H=v Q y

ˆ ˆ qLR = ⋅x T x

;  out outin in inx x q y y y= + ⋅ =

;  out outin in inx x t y y y= + ⋅ =

q, t, rq, t, r inx

Diagonal cell Dii

q, t, rq, t, r

Off-diagonal cell Oij

inxoutx

iny

outy outy

diagonal cell off-diagonal celloperation diagonal cell off-diagonal celloperation

1ˆ −=x R v out in in

out in

x x r y
y y

= − ⋅
=out iny y r=

(d)                        (e) 
Fig. 4.  The linear detection operations for (a) H=v Q y  (b) 1ˆ −=x R v
(c) ˆ ˆLR q= ⋅x T x  in the systolic array. (d)(e) The operations of the diagonal 
and off-diagonal cells in the systolic array at different stages. 
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