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ABSTRACT

Least squares (LS) fitting is one of the most fundamental tech-

niques in science and engineering. It is used to estimate pa-

rameters from multiple noisy observations. In many problems

the parameters are known a-priori to be bounded integer val-

ued, or they come from a finite set of values on an arbitrary

finite lattice. In this case finding the closest vector becomes

NP-Hard problem. In this paper we propose a novel algo-

rithm, the Tomographic Least Squares Decoder (TLSD), that

not only solves the ILS problem, better than other sub-optimal

techniques, but also is capable of providing the a-posteriori

probability distribution for each element in the solution vec-

tor. The algorithm is based on reconstruction of the vector

from multiple two-dimensional projections. The projections

are carefully chosen to provide low computational complex-

ity. Unlike other iterative techniques, such as the belief prop-

agation, the proposed algorithm has ensured convergence. We

also provide simulated experiments comparing the algorithm

to other sub-optimal algorithms.

Index Terms— Integer Least Squares, Bayesian decod-

ing, sparse linear equations. MIMO communication systems.

1. INTRODUCTION

A multiple-input-multiple-output (MIMO) system is a com-

munication system with d transmit antennas and p receive an-

tennas. The tap gain from transmit antenna i to receive an-

tenna j is denoted by Hij . In each use of the MIMO channel

a signal vector s = (s1, ..., sd)
�

is independently selected

from a set of constellation points A according to the data to

be transmitted, so that s ∈ Ad. The received vector x is given

by:

x = Hs + n (1)

The vector n is an additive noise in which the noise com-

ponents are assumed as zero mean, statistically independent

Gaussians with a known variance σ2. The channel matrix

which is assumed to be known, comprises i.i.d. elements

drawn from a (circularly symmetric zero-mean complex) nor-

mal distribution of unit variance. In the case where the MIMO

linear system is complex-valued we use the standard method

to translate it into an equivalent double-size real-valued rep-

resentation that is obtained by considering the real and imag-

inary parts separately. The MIMO detection problem is then

becomes finding the transmitted vector s given H and x. The

optimal maximum likelihood (ML) solution is:

ŝ = arg min
s∈Ad

‖Hs − x‖2 (2)

However, ML decoding has exponential computational com-

plexity which makes it unfeasible when either the number of

transmitted antennas or the constellation size are large. Ac-

tually, for a general H, it is known to be NP-HARD both in

the worst-case sense [1] as well as in the average sense [2]. It

can be easily verified that the MIMO ML detection problem

is equivalent to a least square lattice search problem that is

known to be NP hard. A simple approximation is the zero-

forcing (ZF) algorithm which is based on a linear decision

ignoring the finite constellation constraint:

ŝ = (H
�
H)−1H

�
x (3)

and then, neglecting the correlation between the symbols,

finding the closest constellation point for each symbol inde-

pendently. This scheme performs poorly due to its inability

to handle ill-conditioned channel matrix realizations. Some-

what better performance can be obtained by using a mini-

mum mean square error (MMSE) filter instead of ZF on the

un-constrained linear system:

ŝ = (H
�
H + σ2I)−1H

�
x (4)

and then finding the closest lattice point in each component

independently. A vast improvement over the linear approach

can be achieved by using sequential decoding. This algo-

rithm, known as MMSE V-BLAST or MMSE-SIC, has the

best performance for this family of linear-based algorithms.

However, there is a still a significant gap between the detec-

tion performance of the MMSE-SIC algorithm and the per-

formance of the optimal ML detector. The complexity of all

these algorithms is O(p3) where p is the number of receive an-

tennas (we assume p ≥ d). These algorithms can also easily

provide probabilistic (soft-decision) estimates for each sym-

bol (or each bit).
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Many alternative structures have been proposed to ap-

proach the ML detection performance. For example, the

sphere decoding algorithm [3], approaches using the se-

quential Monte Carlo framework [4] and methods based on

semidefinite relaxation [5], [6] have successfully been im-

plemented. Although the detection schemes listed above

have significantly reduced computational complexity, sphere

decoding is still exponential in the average case [7]) and

semidefinite relaxation is high-degree polynomial. Neither of

these approaches can be easily used in real-world hardware

architecture applications. Since these algorithms find the

closest point in the lattice, it is not straight-forward to com-

pute a-posteriori probabilities per symbol or per bit, which is

required, when forward error correction is used (e.g., in com-

munication applications), but it can be done with increased

complexity of the sphere decoding procedure [8]. Thus, there

is still a need for low complexity detection algorithms that

can achieve good performance with low-order polynomial

complexity, that are capable of providing per-bit likelihood

ratios.

In this paper we propose a novel iterative technique,

which we dub Tomographic Least Squares Decoder (TLSD),

that is based on 2D projections followed by iterative optimiza-

tion. The solution also allows us to provide a-posteriori prob-

ability distributions to each bit of each variable, something

desirable in coded communication systems. Such probabili-

ties are more complicated to evaluate using sphere decoding

types of solution.

The paper proceeds as follows. In Section 2 we present

the proposed TLSD algorithm. Experimental results are

shown and discussed in Section 3.

2. TOMOGRAPHIC DECODING OF CONSTRAINED
LINEAR SYSTEMS

In this section we present a novel polynomial time algorithm

for solving the bounded integer least squares problem. The

algorithm outperforms other reduced complexity algorithms

with lower complexity. The algorithm has two important

steps. The first step is translating the problem into a set of

two-dimensional problems. The second step comprises of

solving iteratively the two-dimensional problems by using

data received from other two-dimensional problems. This

is very similar to tomographic imaging, where an object is

reconstructed from its projections on lower-dimensional sub-

spaces. Hence we dub it Tomographic Least Squares Decoder
(TLSD). The difference is that our object is discrete, and the

data that is shared among the projections consists of proba-

bility distributions. The second step can also be interpreted

as an instance of the incremental EM algorithm [9]. This will

allow us to prove the convergence of the algorithm.

2.1. The two-dimensional projections

Our approach can be viewed as a combination of a two-

dimensional generalization of the ZF solution with optimal

solution of the 2D subsystems obtained by this generalization.

Let h1, ...,hd be the columns of H and for each 1 ≤ i <
j ≤ d let Aij be the matrix obtained from H by removing

both i-th and j-th columns. It can be easily verified that the

transformation:

Pij = I − Aij(A
�
ijAij)−1A

�
ij (5)

is an orthogonal projection into the complement of the sub-

space spanned by {hk|k �= i, j}. Hence

PijHs = Pij

∑

k

hksk = Pijhisi + Pijhjsj (6)

Applying the linear transformation Pij on both sides of the

equation Hs+n = x, yields a set of p equations that depends

only on the two variables si and sj :

Pijhisi + Pijhjsj + Pijn = Pijx (7)

Using the simplifying notation: Hij = Pij [hi,hj ], nij =
Pijn and xij = Pijx, Eq. (7) can be written as:

Hij [si, sj ]
�

+ nij = xij (8)

where nij ∼ N (0, σ2Pij). The density function of xij is:

fij(xij ; si, sj) =
1

2πσ2
exp(− 1

2σ2
‖xij − Hij [si, sj ]

�‖2)
(9)

Note that this is a two dimensional density function since the

vector xij belongs to a two dimensional subspace spanned by

Pijhi and Pijhj . Furthermore, the orthogonal projection of

an isotropic Gaussian variable is still isotropic in the projected

space.

We have converted the original linear system into
(
d
2

)

systems of sparse linear equations. If we take only non-

overlapping projections (e.g. P12, P34, ..., Pd−1,d) and solve

the corresponding linear systems, it can be easily verified that

we get exactly the linear ZF solution. Our approach is based

on taking all the
(
d
2

)
sparse systems. Due to the overlap be-

tween the projections, each of the solvers of the sub-problems

provides information to the other solvers.

Ignoring the noise correlation between equation sets ob-

tained by different projections, the likelihood function of s ∈
Ad, based on the sparse linear systems:

Hij [si, sj ]
�

+ nij = xij , 1≤ i<j≤d (10)

is:

f(x; s) =
∏

i<j

fij(xij ; si, sj) (11)

= (
1

2πσ2
)(

d
2) exp(− 1

2σ2

∑

i<j

‖xij − Hij [si, sj ]
�‖2)
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Note that f(x; s) is not the precise likelihood function since

we ignore the noise correlation between equations derived

from different projections. Note however that all pairwise

correlations are still captured by the relevant 2-D subprob-

lems, so basically we only give up noise correlations of order

3 and higher.

Our goal now is finding the maximum-likelihood solution

of the new system: ŝ = arg maxs f(x; s). In the next sec-

tion we present an iterative method for maximizing f(x; s).
The main point of this paper is that by applying the 2D pro-

jections we shift from the original likelihood function into a

very similar function that is much easier to optimize. The

sparsity of the new system makes f(x; s) a much smoother

function than the original likelihood function. This smooth-

ness enables applying an effective iterative search. A similar

situation occurs in LDPC codes[10] where the sparsity of the

parity-check matrix results in a smooth likelihood function.

2.2. Iterative solution of the sparse problem

We have now converted the original linear system, into
(
d
2

)

sets of sparse equations. The second step of our approach

comprises of solving iteratively the two-dimensional prob-

lems by using data received from other two-dimensional prob-

lems.

Given an a-priori probability vector for si, sj we can now

easily use xij to update these probabilities in a locally op-

timal way. Assume that for each i = 1, ..., d we have an

a-priori probability distribution on si i.e., probability vectors

θi = (θi(1), ..., θi(M)), where θi(k) = p (si = ak), where

A = {a1, ..., aM} is the finite symbol set. Given xij we

can compute the a-posteriori probability for si, sj denoted by

θa
i , θa

j respectively and given by

θa
i (k) ∝ θi(k)

M∑

�=1

θj(�)Dij(ak, a�) (12)

θa
j (�) ∝ θj(�)

M∑

k=1

θi(k)Dij(ak, a�)

where

Dij(ak, a�) = fij(xij ; ak, a�) (13)

=
1

2πσ2
exp(− 1

2σ2
‖xij − Hij [ak, a�]

�‖2)

and the notation ∝ indicates normalization of the vector to

make it a distribution. We can now iterate the updates of

θi, i = 1, ..., d, by choosing at each iteration a new pair i < j
and updating θi, θj . It can be shown that this is an instance

of the EM algorithm.

To initialize the process we need a good choice of the a-

priori probability vectors θi. This can be done for example

using a soft version of the ZF solution. Let Pi be the ZF

one-dimensional orthogonal projection into complement of

the subspace spanned by {hk|k �= i}. Then the initial pa-

rameter values are:

θi(k) ∝ exp(− 1
2σ2

‖Pihiak − Pix‖2) (14)

2.3. The TLSD algorithm

To decode an integer LS problem we perform the follow-

ing: We first compute all the matrices Hij . This amounts

to
(
d
2

)
QR factorizations for each i < j. This has complexity

O
(
d2p3

)
, but it is done once in the beginning of the decod-

ing process. Now for each received vector x we first use a

ZF receiver to generate the a-priori probability distributions

θi, i = 1, . . . , d. This has complexity of O(p3), since the

main problem is the computation of the ZF receiver. Comput-

ing the priors is O(Md).
The next step is to compute for each two-dimensional vec-

tor of constellation points the metric using equation (13). This

has complexity of O
(
d2M2

)
. This is done once for each re-

ceived vector. Now we go over all vectors xij sequentially

and update θi, θj using (12). This is done until convergence

is achieved, typically with few iterations. The overall com-

plexity is O(M2Niter). After convergence the we obtain a-

posteriori probabilities per symbol. A hard-decision solution

is given by choosing for each i = 1, ..., d the most probable

symbol:

ŝi = arg max
1≤k≤M

θi(k) (15)

The algorithm-box in Table I summarizes the TLSD algo-

rithm. The proposed TLSD algorithm is based only on two-

dimensional subspaces. It is straightforward to improve the

algorithm by using projections on higher dimensional sub-

space. This can have improved performance, and higher com-

putational complexity. Finally we compare the likelihood of

the solution vector with the likelihood of the MMSE-SIC so-

lution and choose the one with higher likelihood. It turns out

that since these algorithms use different type of information

about the solution, that this improves the performance, espe-

cially for low SNR situations.

3. SIMULATIONS

In this section we provide simulation results for the proposed

detector over various uncoded MIMO systems. We assume a

quasi-static fading channel with a frame length of 100. Under

the assumption of block-fading channel model, the channel

matrix H is constant for 100 channel uses. The channel ma-

trix comprised i.i.d. elements drawn from a zero-mean normal

distribution of unit variance. We have used 10,000 realiza-

tions of channel matrix. This results in 106 vector messages.

The SNR is defined as 10 log10(Eb/N0) where Eb is the av-

erage received energy per symbol at each receiver antenna.

Fig. 1 shows the symbol error rate (SER) versus SNR

for a 8 × 8 BPSK MIMO system. The performance of the
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Table 1. The Tomographic Least Squares Decoder (TLSD)

Input: An integer LS problem: Hs + n = x, a noise level σ2

and a finite symbol set {a1, ..., aM}.

Initialization:
For i = 1, ..., d

initialize 〈θi(k) : ak ∈ A〉 using zero-forcing (14).

For each pair 1 ≤ i < j ≤ d
Compute the projection Pij using Eq. (5) and compute:

Dij(ak, a�) = exp(− 1
2σ2 ‖Pij(x − hiak − hja�)‖2) .

End

Do until convergence
For 1 ≤ i < j ≤ d

Update the distributions θi, θj :

θi(k) ∝ θi(k)
∑M

�=1 θj(�)Dij(ak, a�)

θj(�) ∝ θj(�)
∑M

k=1 θi(k)Dij(ak, a�)
End

End
For i = 1, ..., d

Choose ŝi = arg maxk θi(k).

TLSD method is compared to ML detection and to other lin-

ear suboptimal algorithms: the linear MMSE and the sequen-

tial MMSE V-BLAST. In all our experiments the number of

TLSD iterations was limited to 10. It can be seen that the

TLSD algorithm is significantly better than the MMSE-SIC

at the same computational complexity. Fig. 2 depicts similar

results for a 16 × 16 4-PAM MIMO system. The TLSD de-

coder significantly outperforms the MMSE-SIC, while having

comparable computational complexity.

4. CONCLUSIONS

Solving integer least squares problems is an important prob-

lem in many fields. We have proposed a novel technique

based on tomographic principle of reconstruction from pro-

jections. We showed that the method always converges. Fur-

thermore, the proposed method has good performance com-

petitive to all other polynomial algorithms for solving the

problem as demonstrated in simulations. Finally the method

can be extended to provide a-posteriori probabilities per bit

for use in coded communication systems or combined with

sphere decoding, to improve its performance.
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