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ABSTRACT

In this paper, blind decoding of OSTBC based MIMO systems us-
ing sequential Monte-Carlo methods is considered. Similar receivers
developed earlier have suffered from the high computational com-
plexity. By introducing some simplification and approximation tech-
niques, we present a new decoding algorithm that requires much less
computation. In addition to that, an efficient interlaced maximum
likelihood estimator approach is developed to blindly estimate the
statistical parameters of the channel. While a comparative analysis
on the computational complexity shows significant computational
savings, the simulation results show that the performance of the pro-
posed algorithm is not compromised.

Index Terms— MIMO, OSTBC, Kalman filter, Marginalized
particle filter (MPF), Sequential Monte-Carlo (SMC)

1. INTRODUCTION

The focus of this paper is on blind signal detection at the receiver
side of the MIMO system and hereafter this part will be called re-
ceiver in this paper. Among the different receivers for MIMO sys-
tem marginalized particle filters (MPF) based receivers [1] received
significant attention in the recent past. However, SMC methods are
known for their intense computational requirement. The marginal-
ization step employs Kalman filtering for each particle resulting in
significant increase of computational complexity. It is shown in
[2] that as the number of states in the Kalman filter(KF) increases,
the achieved computational reduction will be lost and the technique
will require more computation than the regular PF approach. This
scenario is true for MIMO systems where the number of states in
the Kalman filter increases with growing number of transmitting
as well as receiving antennas since the number of states is propor-
tional to the product of the number of transmitting and receiving
antennas. Another dominant cause for computational load increase
due to marginalization is the repeated likelihood calculations in the
marginalization step.

Hence the objective of this paper is to introduce simplification
as well as appropriate approximation techniques to develop compu-
tationally efficient MPF based MIMO receivers. The contributions
of this paper towards the increased computational efficiency of the
MPF based MIMO system receivers could be summarized as the fol-
lowing three: i)By assuming OSTBC’s it is shown that significant
simplification of the Kalman filtering step as well as the likelihood
calculation step in MPF is possible with no loss in performance, ii)
An approximation is introduced to use one Kalman filter (that is al-
ready simplified) instead of multiple Kalman filters in the marginal-
ization step and iii) An interlaced maximum likelihood estimator
(MLE) approach is developed to estimate the statistical parameters
of the channel model.

2. BACKGROUND

Consider a MIMO system withN transmit andM receive antennas.
In a time-varying flat-fading channel scenario, the discrete baseband
received signal vector is given by

y(n) = x(n)H(n) + v(n) (1)

where H(n) is the N ×M channel matrix which is assumed con-
stant during the transmission of the nth block of data and y(n) =
[y1(n) y2(n) . . . yM (n)], x(n) = [x1(n) x2(n) . . . xN(n)],
v(n) = [v1(n) v2(n) . . . vM (n)] are the row-vectors of the re-
ceived signals, transmitted signals, and noise, respectively.The noise
v(n) is assumed to be zero-mean complex Gaussian and spatio-
temporally white with covariance matrix σ2

vIM where IM is the
identity matrix of dimensionM .

We consider a block transmission scheme and assume that
within the block period T , the channel is fixed. Based on such an
assumption, the nth received block can be written as

Y(n) = X(n)H(n) + V(n) (2)

where
Y(n) =

[
yT (nT − T + 1),yT (nT − T + 2), . . . , yT (nT )

]T

X(n) =
[
xT (nT − T + 1), xT (nT − T + 2), . . .xT (nT )

]T

V(n) =
[
vT (nT − T + 1),vT (nT − T + 2), . . .vT (nT )

]T de-
note the received data, the transmitted data, and the measurement
noise matrices respectively and (.)T denotes matrix transpose.

It should be emphasized that differential modulation should be
employed in order to resolve the phase ambiguity that is inherent to
any blind decoding scheme. The differential modulation scheme is
summarized as s0 = 1, sn = sn−1 ◦ dn where 1 is the column
vector of length K containing all ones, ◦ denoted the element-by-
element product and dn is the data symbol vector for the nth block.

The matrixX(n) is a linear mapping that transforms sn to a T×
N matrix based on orthogonal space-time block coding (OSTBC,
[3], [4]). Hereafter we replaceX(n) withX(sn). It should be noted
that X(n) satisfies XH(sn)X(sn) = ‖sn‖

2IN [4], where ‖ · ‖ is
the Euclidean norm and (·)H denotes Hermitian transpose.

Let us re-write the nth received block (2) in the following format

yn = B(sn)hn + vn (3)

where yn = vec{Y(n)}, B(sn) = IM ⊗ X(sn),hn =
vec{H(n)}, vn = vec{V(n)}, is the i.i.d Gaussian noise vector
that has zero mean and covariance Σv = σ2

vIMT , ⊗ refers to the
kronecker product and vec{·} refers to the vectorization operator
which stacks all the columns of a matrix on top of each other. It can
be easily verified that the matrix B(sn) satisfies BH(sn)B(sn) =
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‖s‖2IMN . This property will be shown later to be useful in the sim-
plifications of the receiver.

The time-varying behaviour of the flat-fading mobile channel
can be approximated as a first order auto-regressive (AR) channel
[5]

hn = Fhn−1 + wn (4)

where, F = αIMN , wn is the i.i.d Gaussian noise vector that has
zero mean and covarianceΣw = σ2

wIMN and the channel parameter
α is a function of doppler frequency of the (moving) wireless node
Fd, sampling time Ts and carrier frequency Fc. Indeed α is given by
α = J0(0.2πFdTs) exp {j2πFcTs} where J0(.) is the zeroth-order
Bessel function of first kind.

3. BLIND MIMO DECODER FOR OSTBC

Given (3), the objective of blind decoding is to estimate the data
symbols sn without the knowledge of the channel. Assuming the
knowledge of the noise variances the distribution of the unknowns
p(sn,hn) is called the posterior density. In [1] the linearity of the
state space model (3)-(4) is exploited to marginalize the posterior
distribution and particle filtering is used to track the posterior of the
data symbols. The resulting algorithm (hereafter termed as the MPF
receiver) is summarized below

Algorithm 1: MPF receiver (MPF) of [1]
1. FOR i = 1 : Ns

- Compute KF predicts: hi
n|n−1, Pi

n|n−1

- FOR j = 1 : |A| Compute ψi
j (see (5))

- Draw a sample si
n from the set A

= {a1, . . . , a|A|} with probability ψi
j

- Compute weight update:
Li =

∑|A|
j=1

ψi
j , wi

n = wi
n−1L

i

- Compute KF updates: hi
n|n, Pi

n|n

2. FOR i = 1 : Ns, wi
n = wi

n/
∑Ns

i=1
wi

n

3. Compute (MAP symbol estimate:)
ŝn = arg maxaj∈A

∑Ns

i=1
1(si

n ◦ si∗
n−1 = aj)w

i
n

4. If Neff < Nth perform resampling

whereA = {a1, . . . , a|A|} contains the possible set of data symbols
for any sn and the likelihood ψi

j is computed as

ψi
j = p(yn|s

i
n = aj , s

i
1:n−1,y1:n−1)

p(si
n = aj |s

i
1:n−1, y1:n−1) (5)

The first distribution in (5) is computed as [1]

p(yn|s
i
1:n−1,y1:n−1, sn = aj)

= Nc

(
yn;B(aj)h

i
n|n−1, Ω

i
n,j

)
= π−2MT |Ωi

n,j |
−1 exp

{ (
yn −B(aj)h

i
n|n−1

)H

Ω
i
n,j

−1
(
yn −B(aj)h

i
n|n−1

) }
(6)

whereΩi
n,j = B(aj)P

i
n|n−1B

H(aj) + Σv.
The second distribution in (5) is easily computed based on the

differential encoding structure. It should be noted that the major
computational complexity of the algorithm 1 above arises due to KF
as well as the calculation of the likelihood ψi

j which involves finding
Ns|A| number of determinants as well as inverses of Ωi

n,j for each
iteration n. In the next section we introduce some simplification
techniques for these calculations.

3.1. Simplification Techniques

First, assuming OSTBC and based on [6], the KF channel track-
ing could be efficiently computed as follows, i.e., given the KF esti-
mate at time block n − 1, hi

n−1|n−1 and the associated covariance
δi

n−1|n−1, the KF predicted state hi
n|n−1 and the prediction covari-

ance Pi
n|n−1 = βi

n|n−1IMN are computed as

h
i
n|n−1 = αh

i
n−1|n−1 (7)

βi
n|n−1 = δi

n−1|n−1‖α‖
2 + σ2

w (8)

and the KF update hi
n|n and the associated covariance δi

n|nIMN is
computed as

μi
n =

βi
n|n−1

‖si
n‖2β

i
n|n−1

+ σ2
v

(9)

h
i
n|n = (1− μi

n‖s
i
n‖

2)hi
n|n−1 + μi

nB
H(si

n)ỹn (10)

δi
n|n =

σ2
vβi

n|n−1

‖si
n‖2β

i
n|n−1

+ σ2
v

. (11)

Second, by the use of Sylvester’s determinant theorem, stated as∣∣Im + ABH
∣∣ =

∣∣In + BHA
∣∣ where Im and In are identity matri-

ces of appropriate size and |.| denotes matrix determinant, the deter-
minant part of the likelihood is simplified, i.e.,

|Ωi
n,j | =

∣∣∣σ2
vIMT + βi

n|n−1B(aj)B(aj)
H

∣∣∣
= (σ2

v)MT

∣∣∣∣∣IMN +
βi

n|n−1

σ2
v

B(aj)
H
B(aj)

∣∣∣∣∣
= (σ2

v)MT

(
1 +

βi
n|n−1‖aj‖

2

σ2
v

)MN

. (12)

Thirdly, by the use of matrix inversion lemma, the matrix inverse
part of the likelihood is simplified as

Ω
i
n,j

−1
=

[
B(aj)P

i
n|n−1B

H(aj) + Σw

]−1

=

[
2IMT

σ2
v

− κi
n,jB(aj)B

H(aj)

]
(13)

where κi
n,j =

βi
n|n−1

‖aj‖
2βi

n|n−1
σ2

v+σ4
v

.

3.2. Approximation Techniques

In an attempt to further reduce the computational complexity of the
receiver, an approximation technique is introduced in this section
and the resulting receiver is termed as modified MPF (MMPF) re-
ceiver. The idea is to replace Ns Kalman filters with a single one,
i.e, at iteration n, the MAP data estimate ŝn is used to update the
state and covariance values of the Kalman filter instead of updating
them for each particle si

n.
It should be noted that in the absence of source coding the

marginalized distribution of the discrete state sn will be uniform,
however in practical systems the space-time coding block is pre-
ceded by source coding in order improve the communication sys-
tem. In both scenarios the marginalized posterior would be closer
to unimodal hence the single Kalman filter approximation of [7] is
adopted in this section.
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Algorithm 2: Modified MPF receiver (MMPF)
1. Kalman prediction: ĥn|n−1, β̂n|n−1

2. FOR i = 1 : Ns

- Compute ψ̂i
j

- Draw si
n with probability ψi

j

- Compute: L̂i =
∑A

j=1
; wi

n = wi
n−1L̂

i

3. FOR i = 1 : Ns wi
n = wi

n/
∑Ns

i=1
wi

n

4. Compute (MAP symbol estimate:)
ŝn = arg maxaj∈A

∑Ns

i=1
1(si

n ◦ si∗
n−1 = aj)w

i
n

5. Kalman update (use ŝn): ĥn|n, δ̂n|n

6. If Neff < Nth perform resampling

It should be noted that the likelihood ψ̂i
j above is calculated by re-

placing hi
n|n−1 and βi

n|n−1 in (6) with ĥn|n−1 and β̂n|n−1 respec-
tively. Intuitively enough, starting from ĥn−1|n−1 and δ̂n−1|n−1 the
KF procedure (7)–(11) is followed to get ĥn|n−1, β̂n|n−1, ĥn|n and
δ̂n|n.

3.3. Efficient Blind Estimation

In this section we present an interlaced maximum likelihood (ML)
estimation approach to blindly estimate the channel parameter α.
A natural solution to estimate this parameter would be to use it as a
part of the state in the MPF algorithm, however, doing so will require
complex analytical derivations for marginalization and some of the
gains due to marginalization will be lost as well. Further, expanding
the state dimension will demand more particles to achieve the same
performance. The proposed algorithm is based on the interlacing
approach for spacecraft angular rate and inertia estimation reported
in [8]. In this paper, by exploiting the nature of the data model, we
have much simplified the algorithm, analytically and by introducing
approximations.

The idea behind this approach is to interlace the regular PF with
ML estimate of α. The ML approach is implemented as a secondary
PF by maximizing the likelihood function given by L(α|y1:n)

Δ
=

p(y1:n|α) where

p(y1:n|α) =
n∏

k=1

p(yk|y1:k−1, α)

=
n∏

k=1

∫ ∞

−∞

p (yk|hk,y1:k−1, α) p (hk|y1:k−1, α) dhk

∝
n∏

k=1

|A|∑
j=1

∫ ∞

−∞

p (yk|aj ,hk,y1:k−1, α)

p (hk|y1:k−1, α) dhk (14)

It could be realized from (3) that p (yk|aj ,hk,y1:k−1, α) ∼
N (yk;B(aj)hk, Σv) and from Kalman prediction that
p

(
hk|y1:k−1, α

l
)
∼ N

(
hk;hk|k−1,Pk|k−1

)
hence the

integration reduces to N
(
yk;B(aj)hk|k−1, Ω̄k

)
where

Ω̄k = B(aj)Pk|k−1B
H(aj) + Σv. It should be noted that

hk|k−1 and Pk|k−1 are KF predicts obtained by following (7)–(11).
Now, by calculating the product only for k = 1, an approxima-

tion for the above likelihood is obtained as

Φl
n

Δ
= Φ(αl) ≈ π−2MT

|A|∑
j=1

|Ω̄k|
−1 exp

{(
yk −

B(aj)hk|k−1

)H
Ω̄
−1

k

(
yk −B(aj)hk|k−1

) }
(15)

It is also notable that the above is an approximation only for an α
that remains constant over time whereas for time varying parameter
(15) is more suitable than (14).

Now, assuming that the likelihood (15) is estimated for l = Na

samples, the ML estimate of α is obtained as

α̂ML
n = arg max

l
Φl

n, l = 1, . . . , Na (16)

A block diagram describing the interlaced approach is illus-
trated in Figure. 1 and the corresponding algorithm is summarized
below.

Algorithm 3: Interlaced MMPF receiver (IMMPF)
1. FOR l = 1 : Na

- Assign: αl
n = αl

n−1

- Use ĥn|n−1 and δ̂n|n−1 to compute
Φl

n for each αl
n

2. Compute (the ML estimate:)
α̂ML

n = arg maxl Φl
n

3. Use α = α̂ML
n on the MMPF and find ŝn

4. If Neff < Nth for αls resample them

Remark: It should be noted that the dominant computational
load in the MMPF algorithm comes from the likelihood calcula-
tion and all other computations including that of KF could be ne-
glected. Indeed, blind decoding of each block n by MMPF requires
Ns|A| likelihood calculations. Now, assuming perfect knowledge
of the channel coefficients, the ML decoding requires the compu-
tation of |A| likelihoods. Hence the following relationship could
be established CMMPF = NsCML where C denotes complexity and
the subscript denotes the type of the algorithm. Further, assuming
Ns = Na, it could be said that CIMMPF = 2NsCML.

4. SIMULATION RESULTS AND DISCUSSIONS

In simulations, we consider the full rate Alamouti’s code of [3] with
N = M = T = 2 and K = 2. The channel coefficients H(n)
are generated according to Jakes model [9] for FsTs = 0.005. The
channel parameters are generated based on the block fading assump-
tion. Each element of the data symbols sn is generated from BPSK
symbols, i.e., sn ∈ {−1, +1}K .

The normalized SNR at the receiver is defined as SNR =
σ2

h

MNσ2
v
and the normalized mean squared error (NMSE) is defined

as NMSE = E
{
‖α−α̂n,ML‖

2

‖α‖2

}
and was used to compare the per-

formance of the channel parameter estimate.
Assuming the first block of data at the receiver, the Kalman filter

in each particle is initialized based on the maximum likelihood chan-
nel estimates that can be obtained based on the measurement model
(3). As for the initialization of the interlacing part, for each sam-
ple l, l = 1, . . . Na, the absolute and angle values of the alpha are
initialized from uniform distribution spanning their possible range,
i.e., |αi

0| ∼ U [0, 1], ∠αi
0 ∼ U [−π/2, π/2] where U [a, b] is a uni-

formly distributed number between a and b. Further, a small drift
introduced after the resampling procedure is found to help the ML
estimates to maintain diversity in order to shift towards the true val-
ues. The variance of the drift is decreased with number of blocks n,
i.e., after each resampling step at the nth block, the following is ex-
ecuted |αi

n| = |α
i
n|+N (0, 1

n2 ), ∠αi
n = ∠αi

n +N (0, π

2n2 ) where
N (0, ρ) is a normal distributed number with zero mean and standard
deviation ρ2. The number of particles used in all the simulations is
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kept as Ns = 100 and the number of samples for the interlaced ML
estimator is kept at Na = 100.

Figure 2 shows the SER vs. SNR performance of the proposed
IMMPF receiver for unknown α. For comparison, the receiver based
only on simplification, i.e. MPF receiver with Ns Kalman filters
(termed as ISMPF) is also shown. It confirms that the single KF as-
sumption does not result in performance loss. In Figure 3 an overlay
plot of 100 snapshots of the estimated α by the IMMPF algorithm
is shown. As the figure suggests, regardless of the initial values, the
estimates are found quickly moving towards the true values for both
ISMPF and IMMPF. Hence, after n = 200 iterations the interlac-
ing MLE could be shut down without affecting the performance of
the receiver in order to save computation, provided that the true α
remains constant.

5. CONCLUSIONS

Computationally efficient blind sequential Monte Carlo receivers for
MIMO systems were presented in this paper. First, by assuming
Orthogonal space time block codes, a simplified MIMO receiver
without any compromise in performance was developed based on
the marginalized particle filtering algorithm. Then an approxima-
tion technique was employed to further reduce the complexity of the
simplified receiver resulting in a modified MPF receiver. Finally, an
interlacing approach was developed to estimate the channel parame-
ter α.
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Fig. 1. The block diagram of the interlacing approach to estimate α.
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Fig. 2. The SER vs. SNR for unknown α at FdTs = 0.005 and
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