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ABSTRACT
Using interference alignment, it has been shown that the

number of degrees of freedom in the interference chan-

nel scales linearly with the number of users. Unfortu-

nately, closed-form solutions for interference alignment over

constant-coefficient channels with more than 3 users are

difficult to derive. This paper proposes an algorithm for inter-

ference alignment in the MIMO interference channel with an

arbitrary number of users, antennas, or spatial streams. The

algorithm is an alternating minimization over the precoding

matrices at the transmitters and the interference subspaces at

the receivers, and is proven to converge. Numerical results

show how the algorithm is useful for simulation and can give

insight into the limitations of interference alignment.
Index Terms—MIMO systems, Interference, Radio commu-

nication, Multiuser channels, Optimization methods

I. INTRODUCTION
Interference alignment (IA) is a technique recently shown

to achieve the maximum spatial degrees of freedom in the K-

user interference channel [1]. By forcing interfering signals

at each receiver into a reduced-dimensional subspace of the

received space, the receivers can observe an interference-free

desired signal if it lies outside of the interference subspace. If

the multi-dimensional receive space corresponds to physical

space (antennas) rather than frequency or time slots, then

practical wireless multiple-input multiple-output (MIMO)

techniques such as orthogonal precoding and zero-forcing

receivers can be applied. Unfortunately, there appear to be no

closed-form solutions for the precoders of such systems with

more than 3 users. Further, MIMO interference alignment

does not achieve as many degrees of freedom as when coding

over an infinite number of independent time or frequency

slots, so the limits of MIMO IA remain unclear.

This paper proposes an algorithm for MIMO IA that

alternatively optimizes the precoders at the transmitters and

the interference subspaces at the receivers. The precoders
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and interference subspaces are constrained to be orthonormal

and, with the optimization used, will be shown to lie on the

Grassmann manifold. The gradient of the objective function

on this manifold has a closed-form solution so an alter-

nating minimization approach can be applied. We establish

convergence of the algorithm, although convergence to a

global optimum requires additional work. The proposed

algorithm gives insight into when MIMO interference align-

ment is feasible without any assumptions on number of

users, method of obtaining CSI, reciprocity of the channel,

antenna distribution, or stream allocation.
Interference alignment was first studied in the MIMO X

channel [6], where the achievability for fractional degrees of

freedom spawned research into applying the same principal

to the interference channel. In particular, [1] showed IA

achieves the maximum degrees of freedom of the inter-

ference channel with time or frequency selectivity, though

the degree of freedom frontier for constant channels is still

unknown except with 3 users where it coincides with the

time or frequency selective case. A distributed algorithm for

interference alignment that requires reciprocal channels was

proposed in [4]. Our algorithm removes this requirement and

adds none, making it more general than [4]. It can be used in

a distributed fashion as with [4], but imperfect or quantized

CSI can be considered with the algorithm presented in this

paper. Our formulation is also more conducive to mathemat-

ical and geometrical analysis and interpretation.
This paper uses the following notation: A is a matrix, a

is a vector, and a is a scalar; A∗ is the conjugate transpose

of A, and ‖A‖F is the Frobenius norm of A; tr(A) is

the trace of A; C
N is N -dimensional complex space, and

N (μ,R) is the multivariate normal distribution with mean

μ and covariance matrix R.

II. INTERFERENCE ALIGNMENT
Consider the K-user MIMO interference channel of Fig-

ure 1. This model consists of 2K nodes, K of which are

designated as transmitters while the other K are receivers.

Each transmitter is paired with a single receiver in a 1-

1 mapping. Finally, each transmitter interferes with all the
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Fig. 1. The K-user MIMO interference channel. Transmitter

k, with Mk antennas, has a message for receiver k with Nk

antennas. All transmitters share a channel with all receivers.

receivers it is not paired with. Transmitter k is equipped

with Mk transmit antennas while receiver k is equipped with

Nk receive antennas. Without loss of generality, we assume

transmitter k wishes to communicate with receiver k. For

simplicity we assume a frequency flat channel.

The received signal at receiver k is given as

yk = Hk,kFksk +
∑
� �=k

Hk,�F�s� + vk, (1)

where Hk,� is the narrowband matrix channel from trans-

mitter � to receiver k, F� is the precoding matrix used by

transmitter �, sk is the vector symbol transmitter k wishes to

send to receiver k, and vk is additive white Gaussian noise

with distribution N (0, N0I).
The goal of interference alignment is to choose precoder

matrices {F�}K
�=1 such that each receiver can decode its

own signal by forcing interfering users to share a reduced-

dimensional subspace of the user’s receive space. In partic-

ular, with Sk streams being transmitted by transmitter k, the

interference at receiver k must lie in a linear subspace of

dimension at most Nk − Sk of C
Nk to detect the desired

signal at each receiver with no interference. That is, if the

interference at receiver k lies in a p-dimensional linear sub-

space C of Nk-dimensional (complex) space, then receiver k
can remove all interference by projecting its received signal

to the subspace orthogonal to C. The leftover signal is only

from sk. Of course, the projected signal is of dimension Sk,

meaning receiver k can only resolve Sk-dimensional signals

from transmitter k.

Aligning interfering signals is not altogether a new idea.

The notion first arose in multiuser MIMO algorithms [7],

and was more formally developed in [6] for the MIMO X

channel. Cadambe and Jafar [1] showed that interference

alignment achieves the maximum degrees of freedom in

the K-user MIMO relay channel with frequency or time

selectivity, at the same time proving (surprisingly) that the

number of spatial degrees of freedom scales linearly with

number of users in the interference channel. Interference

alignment is thus optimal at high SNR, but likely suboptimal

at low-to-moderate SNR, where the optimal strategy is

unknown. For this proof, [1] codes an infinite block of

symbols over an infinite number of independent frequency

or time dimensions.

This paper focuses on the case of constant channel coef-

ficients across time and frequency, in effect limiting block

lengths to one. In this case, the maximum achievable spatial

degrees of freedom are unknown [4], except for the 3-user

case [1], where frequency or time selectivity do not increase

the spatial degrees of freedom.

III. INTERFERENCE ALIGNMENT VIA
ALTERNATING MINIMIZATION

Suppose we have a p-dimensional linear subspace U of N
dimensional complex space and a matrix A ∈ C

N×q (p ≥
q). If U is an orthonormal basis of U , then the orthogonal

projection of A onto U is

Ã = UU∗A. (2)

Since the columns of Ã are the least squares solutions to

the equations ak = Ux and have error ‖ak − ãk‖, where ak

is the kth column of A, a natural way to measure the error

between A and its closest point on U is

d(A,U) = ‖A − Ã‖2
F . (3)

More precisely, (3) is the sum of the squared Euclidean

distances between the columns of A and their orthogonal

projections onto U . We now use this measure to derive a

minimum squared error subspace to K matrices.

Lemma 1: Given K arbitrary matrices Ak ∈ C
N×q, the

p-dimensional subspace U with minimum overall Euclidean

distance to the columns of all the Ak has orthonormal basis

U, where the columns of U are the eigenvectors associated

with the p largest eigenvalues of
∑

k AkA∗
k.

Proof: We formulate the problem by minimizing the

sum of the squared errors in (3) over k, namely

Uopt = arg min
U∗U=I

K∑
k=1

‖Ak − UU∗Ak‖2
F , (4)

where U is an orthonormal basis of U . Note that this

objective function is equivalent to forming a composite

matrix of all the columns of the Ak matrices and minimizing
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its distance to U . Using basic properties of linear algebra,

Uopt = arg min
U∗U=I

tr

(
K∑

k=1

A∗
kAk − A∗

kUU∗Ak

)
(5)

= arg max
U∗U=I

tr

(
U∗

(
K∑

k=1

AkA∗
k

)
U

)
. (6)

The solution to (6) for columns of U is known to be the p
dominant eigenvectors of

∑
k AkA∗

k [5].

Lemma 1 can also be proved by noting that (4) is an opti-

mization on the Grassmann manifold, taking the appropriate

gradient with respect to U [3], and setting to zero.

The following lemma deals with finding the nearest matrix

to K subspaces.

Lemma 2: Given K arbitrary p-dimensional subspaces Uk

with respective orthonormal bases Uk and M × N matrix

B, the matrix V such that A = BV, V ∈ C
N×q, that

minimizes the squared Euclidean distance from the columns

of A to the subspaces has columns equal to the eigenvectors

corresponding to the q minimum eigenvalues of
∑

k B∗(I−
UkU∗

k)B.

Proof: The proof follows directly from (5), but with

variable A = BV and fixed Uk.

Lemma 2 can be proven by noting that the optimization

is on the Grassmann manifold and taking the appropriate

gradient [3].

Lemmas 1 and 2 show that our intuitive measure (3)

between a matrix and a subspace have nice optimization

solutions and is thus amenable to an iterative algorithm.

Using this metric, we can pose our problem as follows:

min
F∗

� F�=I,∀�
C∗

kCk=I,∀k

K∑
k=1

K∑
�=1
� �=k

‖Hk,�F� − CkC∗
kHk,�F�‖2

F . (7)

Here, the matrix Ck is an orthonormal basis for received

interference subspace Ck. The linear receiver would then be

formed by Wk = INk
− CkC∗

k.

We have now formulated the interference alignment prob-

lem as an optimization over 2K variables that can be solved

via an alternating minimization [2]. If 2K−1 of the variables

are temporarily fixed, we can optimize the objective function

for the remaining variable, alternating between which vari-

ables are held fixed and which are optimized. Via inspection

we can see that to solve for F�, we need only hold the

Ck fixed, and vice versa. Thus our alternating minimization

takes the following form:

1) Fix F� arbitrarily for all �
2) Let the columns of Ck be the Nk − Sk dominant

eigenvectors of
∑

� �=k Hk,�F�F∗
�H

∗
k,� ∀k

3) Let the columns of F� be the S� least dominant

eigenvectors of
∑

k �=� H∗
k,�(INk

− CkC∗
k)Hk,� ∀�

4) Repeat steps 2,3 until convergence

Steps 2 and 3 are given by Lemmas 1 and 2, respectively.

Since the objective function is minimized at 2 and 3, an

iteration will never increase it. Also, the objective function is

nonnegative. These two properties alone prove convergence

to a solution. As an alternating minimization, however, one

may be able to prove or disprove convergence to the optimal

solution [2]. This is left for future work.

IV. DISCUSSION

It is important to distinguish the above algorithm with that

of [4]. Our algorithm iteratively updates the precoders for

each transmitter and the receive intereference subspaces at

each receiver. Alternatively, [4] updates the projection matrix

at each receiver, and, assuming reciprocity in the channel,

treats this as the precoder for the reciprocal channel. Since

the receive interference subspace is orthogonal to the space

spanned by the projection matrix, the two algorithms give

identical results if reciprocity can be assumed. Our algorithm

makes no assumptions on the reciprocity of the channel, the

distribution of antennas or streams, or on how information

is passed between the two iterative steps. Because of this, it

is better suited for studying how imperfect CSI or quantized

precoders affect the interference-aligned solution.

V. SIMULATIONS

The algorithm presented in Section III produces precod-

ing filters that will approximately minimize a measure of

global interference assuming the receivers use a zero-forcing

equalizer. Even when a perfectly aligned solution exists,

the objective function will likely not reach zero because of

numerical rounding errors, and in fact may have a practical

nonzero lower bound. In fact, for a given finite iteration,

there is no upper bound on the objective function even if the

algorithm will converge to an optimal solution (although the

authors have observed numerically that the algorithm finds

a low-objective solution within a few iterations).

Further, there is no lower bound on the objective function

when a perfectly aligned solution does not exist. That

is, the objective function may theoretically flatten out at

10−10, making it look like perfect interference alignment

is feasible when in fact it is not because the objective is

not approaching zero asymptotically. Thus, this algorithm

cannot prove whether interference alignment is feasible for

a particular antenna/stream allocation, but it can still gain

significant insight into the problem. This feasibility question

is an open problem whose exact mathematical solution is

elusive [4], so the insight the algorithm can give is novel.

We therefore declare that an antenna/stream allocation for

the K user interference channel is numerically feasible if the

objective function falls below 10−4 by the 5000th iteration

for each of 100 randomly generated channel realizations or

if the slope of the objective function is visibly decreasing

at the 5000th iteration. Although this definition may seem

arbitrary, or even strict, we have observed that the algorithm
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Fig. 2. The number of antennas per node required to achieve

1 interference-free spatial stream per user plotted versus

number of transmit/receive pairs in the interference channel.

may converge on an objective of around 10−3 in cases

where perfect interference alignment appears to be not quite

feasible. Some configurations take longer to converge and

will be above 10−4 at this iteration, so a visual inspection

of these cases can confirm whether the objective function

has leveled off or not. Although numerical feasibility does

not imply mathematical feasibility and vice versa, there is

evidence of significant overlap of the two regions.

Figure 2 plots the number of antennas per user required

for numerical feasibility to achieve one stream per user for

variable K. For instance, in the 3-user case it is known that

two antennas per user are required to achieve one degree of

freedom per user [1]. This corresponds to the point K = 3.

Note that the relation is a line with slope 1/2. For intuition

consider the following scenario. We have a K-user inter-

ference channel with each transmit/receive pair transmitting

a single stream. Then there are (K + 1)/2 antennas at

each node. Now we want to add a transmit/receive pair

with its own ability to communicate a single stream without

disrupting the same ability of the others. We must then add

a single antenna to half the nodes. Although our simulations

achieved this by first adding antennas to the receivers and

then to the transmitters, we have found this is an arbitrary

ordering as long as they are evenly distributed with odd K.

Figure 3 plots the objective function for a fixed 4-user

interference channel over 100 iterations with two streams

per user and different antenna configurations. Antennas per

user is computed by (
∑K

k=1 Mk + Nk)/(2K) and assumes

the antennas are as evenly distribted as is possible. The

objective function flattens out relatively quickly, before the

100th iteration, for 4.5 antennas per user. As antennas are

placed in the system, the objective function decreases and

flattens out at later iterations with an objective function

well below 1. At 5 antennas per user, the objective function

approaches zero and thus will not become flat. This suggests

that 5 antennas and 2 streams per user are achievable in the

4-user MIMO interference channel.
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Fig. 3. The objective function for iterative algorithm applied

to the 4-user MIMO interference channel with 2 streams per

user. For Mk = Nk = 5,∀k, the objective approaches zero.

Antennas/user is (
∑K

k=1 Mk + Nk)/(2K).

VI. CONCLUSION
We have proposed an alternating minimization approach to

interference alignment with an arbitrary number of users or

distribution of antennas and spatial streams. The algorithm,

which is useful for simulating IA in any interference channel,

is proven to converge and possibly converges to an optimal

solution, the proof or disproof of which is left for future

work. Insight into the performance limits of interference

alignment has been gained via the convergence properties

of the algorithm.
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