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ABSTRACT

Network coding has been shown to improve throughput, minimize
delay and economize the energy requirements in wireless networks.
This paper presents an algebraic polyphase approach to the wireless
linear network coding problem. By modeling wireless nodes as con-
sisting of linear periodic time varying filters, the model incorporates
realistic constraints including omni directionality of transmissions,
half-duplex operation and interference effects. A rank criterion is
introduced, which together with the transmission constraints, con-
stitutes the necessary and sufficient conditions for the existence of a
wireless network code.

Index Terms— Network coding, linear period time varying
(LPTV) filters, wireless networks.

1. INTRODUCTION

Network coding (NC) is a packet-level coding technique that gen-
eralizes the classical routing paradigm [1]. Based on linear super-
position of incoming packets at nodes, linear NC achieves multicast
capacity in single-source wired networks [2]. Recent efforts focus
on extending extending NC beyond traditional wired networks to ar-
eas such as distributed storage, peer-to-peer file sharing and wireless
networks [3].

Wireless NC promises high data rates, robustness to channel fad-
ing and efficient energy utilization over conventional routing deploy-
ments [4, 5]. However, unlike the relatively simple wired NC de-
signs, the wireless regime is considerably more challenging and fun-
damentally different. For example, on one hand, wireless antennas
are mostly omni directional and thus all nodes are expected to enjoy
a broadcast advantage. On the other hand, wireless nodes with sin-
gle transceivers cannot transmit and receive at the same time (half-
duplex constraint); and transmissions from different nodes must be
scheduled properly to avoid interference at the destination nodes.
Thus, the formulation and results from wired NC do not readily ex-
tend to the wireless scenarios. As mentioned in [6], the algebraic
formulation of wired NC in [7] is primarily link-based, whereas for
wireless NC, a node-based formulation makes more sense.

Most wireless network codes developed so far make use of ran-
dom NC [8, 9]. While random coding does render the networks ro-
bust to link failures, it requires a large alphabet size and tends to
waste resources. A deterministic approach to wireless NC adhering
to realistic constraints was first proposed in [6].
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Fig. 1. Part of a network showing nodes a, b and c.

The present paper develops an algebraic formulation of linear
wireless NC. The main result asserts that by modeling nodes as con-
sisting of linear periodic time varying (LPTV) filters, it is possible
to develop a matrix transfer function that relates source messages to
those received at the sinks. This allows one to obtain concrete al-
gebraic conditions for unique decodability of the source messages.
Coupled with the wireless constraints mentioned earlier, these con-
stitute the necessary and sufficient conditions on the existence of
linear wireless NC. Those in turn guide the design of optimal linear
wireless NCs through purely algebraic methods, paralleling those
pioneered for error control channel codes.

2. PRELIMINARIES

Consider a wireless communication network represented by a di-
rected graph G = (V, E), with V denoting the set of nodes and E the
set of edges. Because of the broadcast nature of the wireless inter-
face, each node is possibly connected to several other nodes. Thus,
the set E consists of tuples (v1, v2) denoting the two nodes that the
edge connects. Similar to [7], lower case alphabets will denote the
nodes and numbers will represent the edges.

In network multicasting, each source s ∈ S (S ⊂ V ) trans-
mits a message comprising a collection of ωs symbols (or data units)
drawn from GF(pm) for some prime number p and positive inte-
ger m. Messages from source s are intended for the sink nodes
Ts ∈ V \ s, that is the sinks for s can be any nodes in V except
s itself. The network operates in a time slotted fashion, where the
duration of each slot depends on the medium access control (MAC)
protocol. Aiming to model a wireless network in a realistic manner,
we adopt the following assumptions:

(A1) Each node can transmit or receive error free only one symbol
per time slot;

(A2) Each node adheres to a half-duplex constraint; and

(A3) At any node, simultaneous reception from two transmitting
nodes is not allowed.
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Fig. 2. An LPTV filter as a switched array of LTI filters.

The half-duplex constraint (A2) prevents any node from transmitting
and receiving in the same time slot. Any interfering signals present
at a node during transmissions are simply ignored. This allows ad-
jacent nodes to transmit simultaneously as long as their intended re-
ceivers are distinct so that (A3) is not violated. In addition to (A3),
it is assumed that there is no interference between non-connected
nodes. This latter assumption will be relaxed to include a more gen-
eral interference model.

Existing wireless NC apporaches satisfy (A2) and (A3) at the
MAC layer while coding is performed at the network layer. In con-
trast here (A2) and (A3) are included in NC design itself which ef-
fects the overall throughput by restricting operation of the nodes to
non-conflicting schedules [6].

Under (A2) and (A3), each node will be shown to behave in a
periodic manner. In the molecule network depicted in Fig. 1, node c

must receive from a and b in two time slots and transmit (broadcast)
their linear combination in the next slot. Thus, the period P of node
c’s transmissions, and hence of the entire network, is at least three.
Note that depending on the connectivity, the period of the network
could even be larger than the degree of any of the nodes. Further,
each node is constrained to operate (transmit, receive or remain idle)
at the period of the network.

3. WIRELESS NETWORKS AS LPTV SYSTEMS

Since wireless nodes operate periodically, they can be described as
consisting of LPTV filters. Fig. 2 shows a commutator model of a
generic LPTV filter. Let the polynomial x(D) :=

∑
n

x(n)Dn rep-
resent the sequence of symbols x(n). An LPTV filter with period P ,
input x(D) and output y(D) is succinctly described by the following
matrix-vector equation [10, Chap. 4]

y = Hx (1)

where the i-th entry of the P × 1 vector x is given by

xi(D) = D
i
∑

x(nP + i)DnP
, i = 0, 1, . . . , P − 1 (2)

and likewise for y. The polynomial xi(D) represents the i-th
polyphase component of x(n). The input x(D) is deinterleaved
into P components (phases), xi(D), and acted upon by P linear
time-invariant (LTI) filters. The transfer matrix of the multi-input
multi-output relation (1) is

H =

⎡
⎢⎢⎢⎣

h0
0(D) h1

P−1(D) . . . hP−1
1 (D)

h0
1(D) h1

0(D) . . . hP−1
2 (D)

...
. . .

...
h0

P−1(D) h1
P−2(D) . . . hP−1

0 (D)

⎤
⎥⎥⎥⎦ (3)
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Fig. 3. Model of a single wireless node.

where hi
j(D) denotes the j-th polyphase component of the filter

hi(D). Equivalently, the (i, j)-th entry of H is

[H]ij = h
j

(i−j)P
(D) (4)

where (i − j)P := (i − j) mod P .
In the rest of the section, we will rely on the polyphase descrip-

tion (1) to construct a transfer matrix that relates the source messages
and the output at the sink through the linear network coding opera-
tions taking place at the nodes. This is the counterpart of the transfer
matrix developed in [7] except that here it will be in the polyphase
domain to account for the wireless regime. As before, the subscripts
will denote the corresponding polyphase components.

3.1. A Single Node

Consider a generic wireless transceiver v modeled as in Fig. 3.
The node consists of LPTV filters at the receiving and transmit-
ting ends (denoted by circles) and a buffer represented by a box,
that stores the P phases of incoming signals. Let Iv denote the
set of potential transmitters to v; and xa the polyphase decompo-
sition (polydec) of the message transmitted by a node a ∈ Iv . De-
pending on whether a effects v at the i-th time slot, the received
message wvai(D) = hvaixai(D) where hvai ∈ {0, 1}. Collect-
ing {hvai}

P−1
i=0 in a diagonal matrix, the received signal can be ex-

pressed as wva = Hvaxa, where

Hva = diag(hva0, hva1, . . . , hvaP−1). (5)

Let Sv be the set of imaginary sources generating messages sσ (for
all σ ∈ Sv) endogenous to node v (denoted by dotted lines in Fig.
3). The received signal wv is formed by the superposition of en-
dogenous and exogenous messages

wv =
∑
a∈Iv

Hvaxa +
∑

σ∈Sv

Hvσsσ (6)

where Hvσ corresponds to the source σ. For linear NC, the output
signal again consists of a linear combination of the elements of the
wv vector. If the LTI scaling filter for the i-th phase is hi

v(D), the
polydec representation of the output xv can be expressed as

xv = Hvwv (7)

where Hv is constructed from hi
v(D) similar to (3). The memory

in each node v is assumed limited so that the maximum degree of
hi

v(D) is P − 1. This also simplifies the system design since [Hv]
ij

is a scalar multiple of D(i−j)P . Finally, combining (6) and (7) yields

xv = Hv

( ∑
a∈Iv

Hvaxa +
∑

σ∈Sv

Hvσsσ

)
. (8)
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Equation (8) holds subject to the following constraints: (a) node
v can only receive from one node at a time; (b) v cannot transmit
and receive at the same time; and (c) adjascent nodes must schedule
their transmissions so that they do not interfere at the receiving node.
These can be expressed analytically as

hvaihvbi = 0 ∀ a, b ∈ Iv and a �= b (9a)

h
j

v(i−j)P
(D)hvai = 0 ∀ a ∈ Iv (9b)

h
j

a(i−j)P
(D)hvbi = 0 ∀ a, b ∈ Iv and a �= b (9c)

for each i, j ∈ {0, 1, . . . , P − 1}.
Under the wireless-embracing constraints (A1)-(A3), equations

(8) and (9a)-(9c) describe the input-output relationship per node.
Remark 1 Interestingly, it is straightforward to incorporate the more
realistic double-disk interference model [11] in this formulation. In-
deed, if there exists a set of nodes I(v) ⊇ Iv , which may possibly
interfere with reception at v, it suffices to change a ∈ Iv in (9c) to
a ∈ I(v).
Remark 2 When v is only a single-source node, (9a)-(9c) are not
in effect. Further, one can eliminate Hvσ since its effect can be
included in Hv and the output becomes

yv = Hvs. (10)

Similarly, when v is a sink node, it constructs the vector

yv = Hv

( ∑
a∈Iv

Hvaxa

)
. (11)

Here the entries of Hv have no transmit constraints but the entries
of Hva for a ∈ Iv are still constrained by (9a). Similar to [7], sink
nodes are assumed, without loss of generality, to have no endoge-
nous sources.

3.2. Single-Source Network Coding

Using the per-node LPTV model of the previous subsection it be-
comes possible to construct a transfer function between the source
messages and the output at the sink. Consider a network G with
source s and a given sink t (there may be other sinks but the transfer
function for each must be constructed separately). Let x be the super
vector formed by stacking all polydec outputs {xv, v ∈ V \s}. Also
let the polydec of source messages be stacked in the vector s. With
these notational conventions, it follows that

x = Fx + As (12)

where F is the adjacency matrix consisting of P × P submatrices,

Fij =

{
HiHij

if j ∈ Ii where i, j ∈ V \ s

0 otherwise
(13)

and A = Hs. Then at any sink t, the message s can be recovered
from y := xt = Bx, where y is the polydec of the recovered
message and B is the corresponding extraction matrix. The matrix
F turns out to be nilpotent and x can be eliminated to yield

y = B(I − F)−1
As. (14)

Given y, successful recovery of the message s thus depends on
the structure of the transfer matrix H = B(I − F)−1A. In this
model, s is assumed to be a continuous stream of messages at the
sources. However, not all polyphase components of s are actually

a b

c

d e

Fig. 4. A simple butterfly network with sources a and b and sinks d

and e.

injected into the network because there are time slots during which
the source is actually silent (thus allowing adjacent nodes to trans-
mit). Thus, if the source transmits for ωs time slots per period (and
remains silent for the rest of the slots), the P×P system of equations
(14) simplifies to the P × ωs system

y = Hmsm (15)

where the sm stands for the source message part and Hm is con-
structed by removing from H the columns corresponding to zero
entries in s. Obviously, the ωs polyphases are recoverable if and
only if Hm is full rank. We have thus established that:

Proposition 1 Constraints (9a)-(9c) and full rank of Hm are the
necessary and sufficient conditions for the unique decodability of a
source message in a single-source wireless network code.

3.3. Multi-Source Network Coding

The multi-source LPTV setup is a simple extension of the single-
source formulation. In fact, for each sink, we still have the transfer
equation in (14) except that s is formed by stacking the polydec of
different source messages. However messages from only a subset of
source may be required at a given sink. Since the sink has no means
of distinguishing the required messages from interference, one must
ensure that the corresponding entries of H are zero [7].

If sM (sI ) denotes the message (interference) part of s at a sink
t, the input-output relationship at t can be written as

y =
[
H1 H2

] [
sM

sI

]
. (16)

where sM has size ωst × 1. As before, H1m and H2m are con-
structed by removing the columns corresponding to the zero entries
of sM and sI , respectively. The conditions for zero interference and
recoverability of sM become

rank(H1m) = ωst (17a)

and H2m = 0 (17b)

respectively, for some values hik ∈ GF (pm). Hence,

Proposition 2 Constraints (9a)-(9c) and (17a)-(17b) constitute the
necessary and sufficient conditions for the unique decodability of
source messages in a a multi-source wireless network code.

4. AN EXAMPLE

We now consider an example to illustrate the formulation. Consider
the simple butterfly network with two source nodes depicted in Fig.
4. Source nodes a and b are connected to one imaginary source
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stream each, while the sinks d and e require messages from both
sources.

The period of the network is at least three since the node c takes
at least two time slots to receive from nodes a and b, and another
time slot to transmit (in general P ≥ maxv∈V \S Iv + 1). Selecting
P = 3, we wish to check if a solution exists. The signals transmitted
by nodes a, b and c are, respectively

xa = Hasa

xb = Hbsb

xc = Hc(Hcaxa + Hcb
xb)

where Ha, Hb and Hc are constructed from the LTI filters hi
a(D),

hi
b(D) and hi

c(D) for i = 0, 1 and 2; while Hca := diag (hca0,
hca1, hca2) and Hcb

:= diag(hcb0, hcb1, hcb2). Sinks d and e out-
put,

xd = Hd (Hdaxa + Hdcxc) (18)

xe = He (Hdb
xa + Hdcxc) (19)

where the transfer matrices are constructed as before. We can now
construct the system transfer function for node d as

H = Hd

[
(Hda + HdcHcHca)Ha HdcHcHcb

Hb

]
. (20)

Constraints (9a)-(9c) specialize to

hcaihcbi = 0 hebiheci = 0 hdaihdci = 0

h
j

a(i−j)2
hcbi = 0 h

j

b(i−j)2
hcai = 0 h

j

c(i−j)2
hcbi = 0

h
j

c(i−j)2
hdai = 0 h

j

a(i−j)2
hdci = 0 h

j

c(i−j)2
hcai = 0

h
j

b(i−j)2
heci = 0 h

j

c(i−j)2
hebi = 0 ∀ i, j = 0, 1, 2 (21)

where terms such as h
j

v(i−j)2
are scalar multiples of D(i−j)2 .

The first step towards finding a network code is to obtain a fea-
sible set of variables that satisfy all the constraints. Since each con-
straint involves two variables each and is homogeneous, it can be
readily converted into a single Boolean equation. This is accom-
plished by replacing each variable x by its indicator variable 11(x),
which is non zero if and only if x is non zero. Taking the Boolean OR
of all the resulting monomials and equating to zero yields a Boolean
equation which can be solved using standard methods; see e.g., [12]
and references therein.

Next, for each solution found, variable x becomes zero when-
ever 11(x) = 0, but remains indeterminate otherwise. Since terms
such as hcai ∈ {0, 1}, they can be directly replaced by the cor-
responding value of their indicator functions. Finally, substitution
into the transfer function H results in a set of polynomial equations
that can be solved using standard methods from algebraic geometry.
Thus, one possible solution of (21) yields

[Ha]00 = [Hca ]00 = [Hda ]00 = 1

[Hb]11 = [Hcb
]11 = [Heb

]11 = 1

[Hdc ]22 = [Hec ]22 = 1

[Hc]20 = D
2 and [Hc]21 = D

with all other entries being zero. The resultant network transfer ma-
trix is

H = Hd

⎡
⎣ 1 0 0 0 0 0

0 0 0 0 0 0
D2 0 0 0 D 0

⎤
⎦ . (22)

It is now possible to choose Hd such that each of the polyphase
components of y becomes a separate message vector; e.g.,

Hd =

⎡
⎣ 1 0 0

0 0 0
D2 0 1

⎤
⎦ (23)

yields

H =

⎡
⎣1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 D 0

⎤
⎦ . (24)

The components of the sink vector become

yd =

⎡
⎣ sa0(D)

0
Dsb1(D)

⎤
⎦ (25)

where as usual sai(D) denotes the i-th polyphase component of the
source vector from node a. Construction of He for sink e can also
be performed similarly. In general, we might need to eliminate some
columns of H to obtain Hm, and then express the rank conditions
as a set of polynomial equations [13]. Any solution to this set of
equations is then a valid network coding solution.
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