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ABSTRACT

The clipping of log-likelihood ratios (LLRs) in soft demodula-
tors for multiple-input multiple-output (MIMO) systems with bit-
interleaved coded modulation (BICM) was recently observed to
allow for enormous complexity savings. In this paper we first
provide an information-geometric interpretation of LLR clipping
as information projection onto a log-convex manifold. Then we
study the system capacity of MIMO-BICM systems that use LLR
clipping. Our results show that strong LLR clipping is possible
without significant capacity loss. We finally propose an LLR trans-
formation scheme which is necessary for approaching capacity in
case of strong clipping. The usefulness of this LLR transformation
is illustrated by numerical simulations for MIMO-BICM systems
employing low-density parity check (LDPC) codes.

Index Terms— log-likelihood ratio, soft demodulation, infor-
mation geometry, BICM capacity

1. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1] is a promising trans-
mission scheme that has recently received increasing interest in the
context of multiple-input multiple-output (MIMO) systems. BICM
receivers comprise a demapper (demodulator) that provides soft in-
formation about the code bits to the channel decoder. Usually, this
soft information consists of bit-wise log-likelihood ratios (LLRs).
Since optimum demapping is exponentially complex in the number
of transmit antennas, a large number of low-complexity detectors
have been proposed. Specifically, soft sphere decoding with single
tree search and LLR clipping was recently observed to provide an
excellent performance-complexity tradeoff [2]. This provides the
motivation for the present paper.

In this paper, we first provide an interpretation of LLR clipping
in terms of notions from information geometry [3]. In particular, we
show that clipping LLRs amounts to a projection onto a log-convex
submanifold. We then study the capacity of a MIMO-BICM system
with LLR clipping using the performance measure proposed in [4],
which reveals that strong clipping is possible without noticeable ca-
pacity reduction. However, the theoretical capacity limits cannot be
approached by plain application of low-density parity check (LDPC)
codes with sum-product decoding. We argue that this is due to the
fact that clipped LLRs tend to be overly pessimistic and we propose
a simple LLR remapping that avoids this problem. All of our claims
are substantiated via numerical simulations. We note that a similar
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problem in the context of iterative tree search has been investigated
in [5].

The rest of this paper is organized as follows. Section 2 presents
the MIMO-BICM system model. In Section 3, we provide an in-
formation geometric interpretation of LLR clipping and Section 4
studies the capacity of MIMO-BICM systems with LLR clipping.
A correction of the clipped LLR values is introduced in Section 5.
Conclusions are provided in Section 6.

2. SYSTEM MODEL

In our MIMO-BICM system, a block of L information bits b is en-
coded with a rate R code, yielding a block of N = L/R code bits.
The code bits are passed through an interleaver Π and groups of
R0 = mMT interleaved bits1 cl[n], l = 1, . . . , R0, are mapped to

complex-valued transmit vectors s[n] � (s1[n] . . . sMT [n])T with
symbols sk from an alphabet X of size |X | = 2m. Assuming MR

receive antennas and fast Rayleigh fading, the output of the MIMO
channel is

y[n] = H[n]s[n] + w[n],

where H[n] is the MR × MT channel matrix and w[n] is the noise
vector with i.i.d. circularly symmetric complex Gaussian compo-
nents of variance σ2

w. The transmit vector is subject to the power
constraint E{‖s[n]‖2} = Es. Given normalized entries of the chan-
nel matrix, the receive SNR therefore equals ρ = ES/σ2

w.
Assuming perfect knowledge of the channel state H[n] and the

noise variance σ2
w at the receiver, the demapper calculates LLRs for

the code bits:

Λl[n] � log
P{cl[n]=1|y[n]}
P{cl[n]=0|y[n]} . (1)

With the max-log approximation [1] there is

Λl[n] ≈ 1

σ2
w

»
min
s∈X0

l

‖y[n]−H[n]s‖2 − min
s∈X1

l

‖y[n]−H[n]s‖2

–
.

Here, X d
l denotes the subset of transmit vectors s for which the lth

bit equals d. These LLRs are de-interleaved (Π−1) and passed to
a soft-in channel decoder that exploits the code structure to deliver
final estimates of the information bits.

Soft sphere decoding with LLR clipping uses a threshold Λ̂ to
terminate the tree search as soon as it turns out that Λ̃l[n] is larger

than Λ̂ or smaller than −Λ̂, in which case ±Λ̂ is passed to the chan-
nel decoder. This can equivalently be formulated as actual clipping:

Λ̃l[n] =

8><
>:

Λ̂, for Λl[n] > Λ̂,

Λl[n], for |Λl[n]| ≤ Λ̂,

−Λ̂, for Λl[n] < −Λ̂.

(2)

1Here, n = 1, . . . , N/R0 denotes discrete symbol time.
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3. INFORMATION-GEOMETRIC INTERPRETATION OF
LLR CLIPPING

We next provide some basics on information geometry which views
probability distributions as points on a manifold. For further details
we refer to [3] and [6].

Fundamentals. In this paper, we are mostly concerned with length-
N sequences c = (c1 . . . cN ) of code bits c(n−1)R0+l = cl[n].

The 2N possible sequences can be characterized via their (se-
quence) probability mass functions (pmf) p(ck) = P{c=ck}, k =
0, . . . , K. where K = 2N −1 and P{E} denotes the probability of

the event E. Since
PK

k=0 p(ck) = 1, i.e., p(c0) = 1−PK
k=1 p(ck),

the collection of all possible pmfs of c constitutes an exponential
manifold of dimension K = 2N −1. Without loss of generality,
we assume that the 2N possible sequences are indexed such that ck

equals the length-N binary representation of k. Equivalent coordi-
nates for pmfs on this manifold are given by p̃ = (p̃1 . . . p̃K)T with
p̃k = p(ck) (”expectation parameters”) or η̃ = (η̃1 . . . η̃K)T with

η̃k = log p(ck)
p(c0)

(”natural parameters”).

Distances on the manifold of pmfs can be measured in terms of
the Kullback-Leibler (KL) divergence [7] between two distributions
p(c) and q(c),

D(p‖q) =
KX

k=0

p(ck) log
p(ck)

q(ck)
.

There is D(p‖q) ≥ 0 with equality if and only if p(c) = q(c).
However, the KL divergence is non-symmetric and hence no metric.

The orthogonal projection of Euclidean geometry has an analo-
gon in information geometry which is termed I-projection [6]. Given
a distribution q, the I-projection onto a convex set S is defined as the
distribution p∗∈ S that is “closest” to q in terms of KL divergence:

p∗ = arg min
p∈S

D(p‖q). (3)

The asymmetry of the KLD further allows to define a so-called rI-
Projection (the ’r’ stands for “reverse”):

p∗ = arg min
p∈S

D(q‖p), (4)

where S now is a log-convex set.

Demapper Output PMF. A special case important for our analysis
is the set of bit sequence distributions that are factorizable:

F =
n

p : p(c) =
NY

i=1

pi(ci)
o

, (5)

Here, pi(ci) =
P
∼ci

p(c) where ∼ ci means summation with
respect to all bits except ci. It can easily be verified that F
is an N -dimensional log-convex submanifold with coordinates
(p1 . . . pN )T where pi = P{ci = 1} or η = (η1 . . . ηN )T with

ηi = log P{ci=1}
P{ci=0} . Specifically, using the factorization property in

(5) allows to rewrite the natural sequence parameters as

η̃ = Bη , (6)

where B is a K × N matrix whose kth row contains the length-N
binary representation of k. Thus, in the log-domain F is an N -
dimensional linear submanifold.

Note that the natural coordinates are just the bit LLRs. It can be
shown (cf. [8] for the single-antenna case) that the demapper output
corresponds to a factorizable sequence pmf

pdem(c) =
NY

i=1

pdem
i (ci) , pdem

i (ci) =
1

1 + e−(2ci−1)Λi
,

(where Λ(n−1)R0+l = Λl[n]), which is the factorizable pmf closest

to the “observed” distribution pobs(c) ∝ p({y[1], . . .y[N/R0]}|c).
More precisely,

pdem(c) = min
p∈F

D(pobs‖p).

Clipping Manifold. In the following, we will show that bit-wise
LLR clipping can be interpreted as a reverse I-projection of the ob-
served pmf onto a log-convex submanifold (termed “clipping man-
ifold”). To begin with, we consider a single bit ci with pmf pi(ci),
i.e., with expectation parameter pi and natural parameter ηi. Clip-

ping the LLR Λi = ηi of this bit using a threshold Λ̂ is equivalent to
restricting pi to the symmetric interval

p̂ ≤ pi ≤ 1−p̂, (7)

with p̂ = 1/(1 + eΛ̂). An equivalent formulation of this restric-
tion can be given in terms of the KL divergence between pi(ci) and
the uniform distribution p̄(0) = p̄(1) = 1/2, or equivalently, the
entropy of pi(ci), i.e., the clipped distributions pi satisfy

D(pi‖p̄) = 1 − h2(pi) ≤ D̂,

with D̂ = 1−h2(p̂) and h2(p) denoting the binary entropy function.

Applying the above conditions to all bit LLRs in a sequence
defines the “clipping manifold”

M = {p ∈ F : |ηi| ≤ Λ̂, i = 1, . . . , N}

Clearly, M ⊂ F . In view of (6), it is straightforward to show that
this is a log-convex manifold, i.e., for two distributions p0(c) ∈ M
and p1(c) ∈ M with natural coordinates η̃0 and η̃1, respectively,
the log-domain convex combination η̃α = αη̃1 + (1 − α)η̃0 cor-
responds to a distribution again in M. Fig. 1 illustrates the clipping

manifold for N = Λ̂ = 2.

Projection Interpretation. We next provide an interpretation of
LLR clipping in terms of information projections. Consider the dis-
tribution pclip(c) ∈ F with natural coordinates ηi = Λ̃i, which
corresponds to the output of the demodulator after LLR clipping. In
the following, we will argue that

pclip(c) = arg min
q∈M

D(pobs‖q), (8)

i.e., pclip(c) is the unique distribution that is factorizable, has LLRs

with magnitude not larger than Λ̂, and is closest to the observed dis-
tribution pobs(c).

We provide the main arguments underlying (8). First we recall
that M ⊂ F and hence the projection in (8) can be performed by
first projecting onto F , which yields pdem(c), and subsequently pro-
jecting onto the clipping manifold (see Fig. 1):

pclip(c) = arg min
q∈M

D(pdem‖q). (9)
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Fig. 1. Bit LLR clipping: interpretation as projection of pdem onto
the clipping manifold M.

Since both pdem(c) and q(c) ∈ M are factorizable, the sequence
KL divergence can be split into a sum of bit-wise KL divergences,

D(pdem‖q) =
NX

i=1

D(pdem
i ‖qi),

where each term can now be individually minimized subject to the
side constraint q ∈ M. On the bit-level, this constraint reduces to
(7). Clearly if pdem

i (ci) satisfies (7), we can achieve D(pdem
i ‖qi) =

0 by setting qi(ci) = pdem
i (ci). Otherwise, it can be shown by

direct verification that the minimum of D(pdem
i ‖qi) is achieved by

choosing qi(ci =1) = p̂ or qi(ci =1) = 1−p̂, depending on which
one is closer to pdem(ci).

4. CAPACITY ANALYSIS

Performance Measure. In the following, we investigate the impact
of LLR clipping on the rates achievable in a non-iterative MIMO-
BICM system by using the code-independent performance measure
described in [4]. Specifically, it was proposed to quantify the ca-
pacity that can be achieved with a specific MIMO-BICM demodula-
tor in terms of the mutual information between the input and output
of an equivalent “modulation” channel. This modulation channel
comprises the modulator, the wireless channel, and the demodulator,
i.e., the channel inputs are given by2 cl and the channel outputs are
given by the LLRs. In our case, where the demodulator performs
LLR clipping (cf. (2)), the channel is completely characterized by
the conditional probability density function (pdf)

f(Λ̃l|cl) = f0(Λ̃l|cl) rect(Λl; Λ̂)

+ Pclδ(Λ̃l−Λ̂l) + P1−clδ(Λ̃l+Λ̂l),
(10)

where f0(Λl|cl) is the conditional pdf of the true LLRs (assumed

to satisfy f0(Λl|cl) = f0(−Λl|1 − cl)), Pcl = P{Λl > Λ̂|cl}
denotes the conditional clipping probabilities, and rect(Λ̃l; Λ̂) is 1 if

Λ̃l ∈ ] − Λ̂; Λ̂[ and zero otherwise.
Following [4], the achievable rate of MIMO-BICM with LLR

clipping at the demodulator is given by

R = R0 −
R0X
l=1

1X
cl=0

Z ∞

−∞

1

2
f(Λ̃l|cl) log2

f(Λ̃l)
1
2
f(Λ̃l|cl)

dΛ̃l, (11)

2For convenience, we suppress the symbol time index n in the following.

where f(Λ̃l) = 1
2

P1
b=0 f(Λ̃l|cl = b); here, we assumed that the

code bits cl are uniformly distributed and statistically independent
(as guaranteed by an ideal interleaver). Note that the measure R
constitutes a code-independent performance measure. Moreover, the
data processing inequality [7] implies that R ≤ CBICM, where CBICM

denotes the capacity delivered by the MIMO-BICM system employ-
ing an optimal soft MAP demodulator [9].

Capacity Results. In what follows, we evaluate the capacity in
(11) using various clipping thresholds under the assumption of er-
godic i.i.d. fast Rayleigh fading. The required pdfs were estimated
by means of Monte-Carlo simulations. Fig. 2(a) shows the results
obtained for clipped max-log demodulation in bit per channel use

(bpcu) versus clipping threshold Λ̂ for a 2×2 MIMO system with
16-QAM (here, R0 =8) and Gray labeling for various SNRs (shown
as curve labels). As a reference we also plot the performance curves
for a hard ML detector that corresponds to infinitesimally small clip-

ping threshold. It is seen that above a certain threshold (about Λ̂>5),
the capacity at all SNRs is virtually the same as without clipping. In

contrast, for Λ̂ < 0.5 performance rapidly approaches that of hard
ML detection. Further simulations (not shown due to lack of space)
revealed that a similar behavior holds true for other labeling strate-
gies, constellation sizes, and antenna configurations. Moreover, it
can be observed that the relative capacity loss incurred by strong
clipping is lower at higher SNR, i.e., the impact of clipping is more
pronounced at low SNR.

Complementing the plots of maximum rate at fixed SNR,
Fig. 2(b) shows the minimum SNR required to achieve a fixed
target rate versus the clipping threshold. Again, the required SNR
increases only if the clipping threshold is below a certain value.
Very strong clipping results in an SNR penalty of about 3 dB at rate
1/4 and about 2 dB at rate 3/4. This confirms that LLR clipping
incurs performance loss particularly at low rates/low SNR.

5. LLR CORRECTION

The LLR magnitude provides reliability information about the cor-
responding code bit, which can be exploited by the channel decoder.
LLR clipping always renders the corresponding bit less reliable than
it actually is, i.e., the clipping amounts to an overly pessimistic
worst-case representation of all LLRs whose magnitude is larger
than the clipping threshold. This suggests that clipped LLRs should
be mapped to a different value that on average better represents the
actual reliabilities. This view can be supported by the equivalent
modulation channel given by (10). Clearly, there are two discrete

channel outputs (±Λ̂) with positive probabilities and the decoder
should actually use the LLR of these discrete channel outputs. We
note that belief propagation [10], predominantly used for LDPC de-
coding, is particularly sensitive to incorrect reliability information.
We remark that the capacity results of Section 4 do not depend on
the actual representative of clipped LLRs since mutual information
does not depend on the channel inputs and outputs but only on their
probabilities; however, incorrect reliability information passed to the
channel decoder may prevent the system from approaching capacity.

Based on (10), we obtain the LLRs for the equivalent channel as

Λ∗l = log
f(Λ̃l|cl = 1)

f(Λ̃l|cl = 0)
=

8><
>:

Λ̂∗, for Λl > Λ̂,

Λl, for |Λl| ≤ Λ̂,

−Λ̂∗, for Λl < −Λ̂.

(12)

Here, Λ̂∗ denotes the corrected value of the clipped LLRs that is
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Fig. 2. Simulation results for a 2×2 MIMO-BICM system with 16-QAM: (a) Capacity vs. clipping threshold for different SNRs, (b) required
SNR vs. clipping value for different code rates, (c) BER vs. SNR for different clipping levels with and without LLR correction.

given by

Λ̂∗ = log
P1

P0
= log

P{Λl > Λ̂| cl =1}
P{Λl > Λ̂| cl =0} . (13)

Since closed-form expressions for the distribution of the optimum
LLRs Λl are not available, Monte Carlo simulations are required
to determine the clipping probabilities P0 and P1. In a practical
implementation, the corrected LLRs Λ∗i may be precomputed and
stored for the system and channel parameters of interest.

Simulation results. To illustrate the effect of LLR correction,
we simulated a 2×2 MIMO-BICM system with 16-QAM signal con-
stellation, Gray labeling, and a regular rate 1/2 LDPC code3 of block
length 64000. Fig.2(c) shows BER versus SNR for conventional
LLR clipping according to (2) (labeled “clip”) and for LLR correc-
tion according to (12) (labeled “corr”), both for clipping thresholds

of Λ̂=0.5 and Λ̂=2. The capacity limits in terms of minimum SNR
required to support rate 1/2 (cf. Fig. 2(b)) are also indicated. With

clipping threshold Λ̂=2, LLR correction is within 0.6 dB of capac-
ity, outperforming plain clipping by roughly 1 dB and approaching
the performance of an idealized system without LLR clipping. In

contrast, with clipping threshold Λ̂ = 0.5, plain clipping is practi-
cally useless while LLR correction allows coming within roughly
1.5 dB of the capacity limit of 10.63 dB. We conclude that LLR cor-
rection is more important for small clipping thresholds and can pro-
vide significant performance improvements.

6. CONCLUSIONS

We have investigated the problem of LLR clipping in demodulators
for MIMO-BICM systems. An information geometric analysis re-
vealed that bit-wise LLR clipping can be interpreted in terms of an
rI-projection on a log-convex manifold, thereby providing a first step
towards a better theoretical understanding of LLR clipping. We then
used a capacity-based performance measure to investigate the effect
of LLR clipping onto the ultimate performance of a MIMO-BICM
demodulator. It turned out that it is possible to use quite small clip-
ping thresholds without noticeable capacity loss. Finally, we pro-
posed an LLR correction scheme for the clipped LLRs which is nec-
essary in order for the decoder to indeed approach capacity.

3The code design was performed using the EPFL web-application at
http://lthcwww.epfl.ch/research/ldpcopt.
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