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ABSTRACT
We investigate the sum capacity of the uplink multiuser multiple-

input multiple-output (MIMO) multiple-access channel (MAC)

in the low signal-to-noise ratio (SNR) regime. For each user,

the MIMO channel is modeled according to a general class

of stochastic channel matrices, known as double-scattering.

Assuming that each user knows only their own spatial cor-

relation matrices and employs optimal statistical beamform-

ing transmission, we present new analytical approximations

for the sum capacity of the MIMO-MAC for low SNR values.

Our approximations are accurate, and lead to key insights into

the effect of correlation.

Index Terms— MIMO systems, Double-scattering, Mul-

tiple access channel.

1. INTRODUCTION

Using multiple-antenna arrays simultaneously at the transmit-

ter and the receiver is widely recognized as an effective means

of improving the performance and spectral efficiency of wire-

less communication systems [1–3]. Nevertheless, in practice,

the performance of multiple-input multiple-output (MIMO)

systems is degraded due to various physical channel phenom-

ena such as rank deficiency and spatial correlation.

To embrace both the spatial correlation and rank-deficient

aspects of the MIMO channel, a general class of stochastic

channel matrices, known as double-scattering, has been pro-

posed in [4]. For single-user systems, the capacity of this

double-scattering model has been investigated in [5], assum-

ing statistical channel state information information (CSI) at

the transmitter. For multi-user systems, the capacity of the

MIMO multiple-access channel (MAC) with double-scattering

has been very recently considered in [6]. Specifically, a closed-

form upper bound for the sum capacity was derived, under
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the assumption of statistical CSI at the transmitters, and used

to propose various closed-form suboptimal power allocation

policies. The optimal transmit directions and beamforming

optimality conditions were also presented. The study in [6]

focused on the capacity in terms of the per-symbol signal-to-

noise ratio (SNR).

In [7], it was shown that in the low SNR (or “wideband”

regime), it is often more appropriate to investigate the ca-

pacity in terms of the normalized energy per information bit,

Eb/N0, rather than the per-symbol SNR. Moreover, it was

shown that the two key performance measures in the low-SNR

regime are the minimum Eb/N0 for reliable communications,

and the wideband slope. In [8, 9], these parameters were stud-

ied in detail for various single-user single-scattering MIMO

channel models.

In this paper, we investigate the low SNR capacity of the

multi-user MIMO-MAC with double-scattering. In particu-

lar, we consider the uplink scenario where the receiver has

access to perfect CSI, and each transmitter has only their own

statistical CSI. As such, the optimal approach is for each user

to employ statistical beamforming [6]. Our main technical

contributions are new closed-form expressions which we de-

rive for the minimum Eb/N0 required for reliable communi-

cations, and the wideband slope. These key parameters lead

directly to a simple and accurate closed-form approximation

for the sum capacity of the double-scattering MIMO-MAC

in the low SNR regime, which we employ to gain valuable

insights into the effect of transmit, receive, and scatter corre-

lation.

2. PRELIMINARIES

Consider a MIMO MAC model with K users. User k has mk

transmit antennas, and the receiver has n antennas. The n× 1
receive signal vector is given by

y =

K∑
k=1

Hkxk + n, (1)
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where n is an n×1 zero-mean complex additive white Gaus-

sian noise (AWGN) vector containing statistically indepen-

dent elements with power N0, and xk is the mk × 1 transmit

signal vector of user k. Let Qk = E
{
xkx

†
k

}
be the trans-

mit covariance matrix of user k, satisfying the power con-

straint tr (Qk) = Pk. The superscript (·)† indicates the matrix

conjugate-transpose operation, E{·} represents expectation,

and tr(·) denotes the matrix trace operation. The matrix Hk,

of dimension n × mk, represents the channel between user k
and the receiver.

2.1. Channel Model

For the double-scattering channel model, the MIMO channel
matrix Hk can be factored according to [4]

Hk =
1√
sk

Φ
1/2
R H

(k)
1 Φ

(k)
S

1/2
H

(k)
2 Φ

(k)
T

1/2
(2)

where H
(k)
1 ∈ C

n×sk and H
(k)
2 ∈ C

sk×mk , k = 1, 2, · · · ,K
are statistically independent matrices containing i.i.d. unit vari-

ance complex Gaussian entries, with sk denoting the number

of effective scatterers of user k on each of the transmit and

receive sides. Also, Φ
(k)
T ∈ C

mk×mk , Φ
(k)
S ∈ C

sk×sk and

ΦR ∈ C
n×n are Hermitian non-negative definite transmit,

scatter, and receive correlation matrices respectively, each with

unit diagonal entries.

2.2. Sum Capacity

Throughout this paper we make the common assumptions that
the receiver has access to perfect CSI for all users, while each
transmitter knows their own transmit, scatter, and receive cor-
relation matrices. Under these assumptions, the sum capacity
is given as [10]

Csum = max
tr(Qk)=Pk

k=1,··· ,K

E

{
log2

∣∣∣In +
1

N0

K∑
k=1

HkQkH
†
k

∣∣∣
}

, (3)

where |X| denotes the determinant of matrix X. It is conve-

nient to introduce the following eigenvalue decompositions:

Qk = U
(k)
Q Λ

(k)
Q U

(k)
Q

†
, Φ

(k)
T = U

(k)
T Λ

(k)
T U

(k)
T

†
, Φ

(k)
S = U

(k)
S Λ

(k)
S

U
(k)
S

†
, ΦR = URΛRU

†
R, where U

(k)
Q , U

(k)
T ,U

(k)
S and UR are

unitary eigenvector matrices, and Λ
(k)
Q = diag

{
λ

(k)
Q1 , · · · , λ

(k)
Qmk

}
,

Λ
(k)
T = diag

{
λ

(k)
T1 , · · · , λ

(k)
Tmk

}
, Λ

(k)
S = diag

{
λ

(k)
S1 , · · · , λ

(k)
Ssk

}
and ΛR = diag

{
λR1, · · · , λRn

}
are diagonal matrices, with di-

agonal elements pertaining to the descending ordered eigen-

values.

2.3. Low SNR Capacity

For low SNR, it is often appropriate to consider the capacity
in terms of the normalized transmit energy per information
bit, Eb/N0, rather than per-symbol SNR. In this respect, the
capacity (3) can be well-approximated by the following ex-
pression [7]

C
(

Eb

N0

)
≈ S0 log2

(
Eb

N0

Eb

N0 min

)
(4)

where Eb/N0min is the minimum Eb/N0 required to con-
vey any positive rate reliably, and S0 is the wideband slope.
Eb

N0 min
and S0 can be calculated from C (SNR) via [7]

Eb

N0 min

=
ln 2

Ċ (0)
, S0 = −

2
[
Ċ (0)

]2

C̈ (0)
, (5)

where Ċ and C̈ denote the first and second order derivative,

respectively, of the function C (SNR), computed in nats.

3. SUM CAPACITY IN THE LOW SNR REGIME

In this section, we investigate the sum capacity of the double-

scattering fading MIMO MAC in the low SNR regime.
When each transmitter knows their own transmit, scatter,

and receive correlation matrices, it was shown in [6] that the
optimal transmission strategy is to employ independent com-
plex Gaussian inputs along the eigenvectors of each user’s

transmit correlation matrix, such that U
(k)
Q = U

(k)
T . More-

over, at low SNR, the optimal capacity-achieving approach
is to employ statistical beamforming, for which the input co-

variance is rank-1, with λ
(k)
Q1 = Pk, λ

(k)
Q2 = · · · = λ

(k)
Qmk

=
0, k = 1, · · · ,K. In this case, the input covariance matrix is

Qk = Pkuk,1u
†
k,1, k = 1, · · · , K, (6)

where uk,1 is the eigenvector corresponding to the maximum

eigenvalue of Φ
(k)
T ; that is, the first column of U

(k)
T . There-

fore, the sum capacity at low SNR can be written as

C (SNR) = E

{
log2

∣∣∣∣∣In + SNR

K∑
k=1

Ak

∣∣∣∣∣
}

(7)

where SNR =
∑K

k=1 Pk

/
N0,

Ak =
λ

(k)
T1μk

sk

Λ
1
2
RH

(k)
1 Λ

(k)
S

1
2 h

(k)
2 h

(k)
2

†
Λ

(k)
S

1
2 H

(k)
1

†
Λ

1
2
R, (8)

μk = Pk

/∑K

l=1 Pl, and h
(k)
2 is the first column of H

(k)
2 .

We now present closed-form solutions for the minimum

Eb/N0 and S0 of the double-scattering MIMO MAC.

Theorem 1 For the double-scattering MIMO MAC with each
transmitter knowing their own statistical CSI, the Eb/N0min
is given by

Eb

N0 min

=
ln 2

n
∑K

k=1 λ
(k)
T1μk

(9)

and the wideband slope is given by (10) (see top of next page),
where, for an N × N matrix X,

ζ (X) = N
tr

(
X2

)
tr2 (X)

. (11)

Proof: See the Appendix. �
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S0 =
2

(∑K

k=1 λ
(k)
T1μk

)2

∑K

k=1 λ
(k)
T1

2
μ2

k + ζ(ΦR)
n

(∑K

k=1 λ
(k)
T1μk

)2

+
(
1 + ζ(ΦR)

n

) ∑K

k=1 λ
(k)
T1

2
μ2

k

ζ
(
Φ

(k)
S

)

sk

(10)

We can make the following observations:

1) Impact of transmit correlation: We see that Eb/N0min

depends on the transmit correlation for each user via the max-

imum eigenvalue λ
(k)
T1 , weighted by the corresponding power

ratio μk. Since λ
(k)
T1 varies monotonically with the level of

transmit correlation, we see that increasing the correlation

leads to a smaller Eb/N0min.
To examine the impact of transmit correlation on S0, we

consider the special case where the scatter correlation matri-
ces are all equal. In this case,

S0 =
2

ω + ζ(ΦR)
n

+ ω
(
1 + ζ(ΦR)

n

) ζ(Φ
(1)
S

)

s1

(12)

where ω =
∑K

k=1 λ
(k)
T1

2
μ2

k

/(∑K

k=1 λ
(k)
T1μk

)2

. It can be eas-

ily seen that S0 increases with increasing transmit correlation

(ie. as λ
(k)
T1 increases, for any k).

Thus, we conclude that the presence of transmit corre-

lation leads to an increase in sum capacity of the double-

scattering MIMO MAC, by simultaneously decreasing the min-

imum required Eb/N0 and increasing the wideband slope.
2) Impact of scatter/receive correlation: Interestingly,

scatter and receive correlation have no effect on Eb/N0min.

Moreover, since ζ(ΦR) and ζ(Φ
(k)
S ) increase with increasing

levels of correlation, we can easily see that S0 varies inversely
with the receive/scatter correlation, satisfying

2

1 + 3ω
≤ S0 ≤ 2

ω + 1
n

+
(
1 + 1

n

) ∑K

k=1
ωk

sk

(13)

where ωk = λ
(k)
T1

2
μ2

k

/(∑K

l=1 λ
(l)
T1μl

)2

, with the lower-bound

corresponding to the case of a fully-correlated receiver and

fully correlated scatterers, and the upper-bound correspond-

ing to an uncorrelated receiver and uncorrelated scatterers.

This result indicates that the presence of receive or scatter

correlation, whilst not affecting the minimum required Eb/N0,

leads to a loss in sum capacity as reflected in a reduced S0.

4. NUMERICAL RESULTS

In this section, we present numerical results to further investi-

gate our analytical results. The spatial correlation matrices at

the transmitters, scatterers, and receiver are assumed to have

an exponential form. Based on this model, the (i, j)th ele-

ments of Φ
(k)
T , Φ

(k)
S and ΦR are

[
Φ

(k)
T

]
i,j

=
(
α

(k)
t

)|i−j|
,

[
Φ

(k)
S

]
i,j

=
(
α

(k)
s

)|i−j|
and [ΦR]i,j = (αr)

|i−j|
respec-

tively, where α
(k)
t , α

(k)
s , αr ∈ [0, 1] are the respective cor-

relation coefficients. Moreover, we assume that m1 = · · · =
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Fig. 1: Low SNR sum capacity of statistical beamforming in

double-scattering MIMO MAC for different number of users; analytical

approximations and Monte-Carlo simulations.

mK = 2, s1 = · · · = sK = 4, n = 3, α
(1)
t = · · · = α

(K)
t =

αt, α
(1)
s = · · · = α

(K)
s = αs, μ1 = · · · = μK .

Fig. 1 illustrates the low SNR sum capacity of the double-

scattering MIMO MAC. We compare Monte-Carlo simula-

tions of the exact sum capacity, with the analytical low SNR

approximation obtained by combining (4), (9), and (10). Re-

sults are shown for different numbers of users, with αt = 0.3,

αs = 0.5, and αr = 0.4. We see that the low SNR approx-

imations are accurate over a quite moderate range of Eb/N0

values. Moreover, we observe that the minimum Eb/N0 is

the same, regardless of the number of users. This is due to the

assumption that the correlation coefficients of all users are the

same, and μ1 = · · · = μK .

Fig. 2 shows the results of Monte-Carlo simulations and

the analytical low SNR approximation curves obtained by

combining (4), (9), and (10), for a 4-user system with dif-

ferent correlation coefficients. We see that Eb/N0min de-

pends on the transmit correlation, but not on the scatter and

receive correlation matrices, and it decreases with increasing

transmit correlation. The wideband slope decreases as the re-

ceive/scatter correlation increase. These results agree with

our analytical conclusions in Section 3.

5. CONCLUSION

This paper has investigated the low SNR capacity of the double-

scattering MIMO MAC, assuming perfect CSI at the receiver

and statistical CSI at each transmitter. We derived the mini-

mum Eb/N0 and wideband slope, which were used to obtain

an accurate closed-form approximation for the capacity in the
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E
{
tr

(
A

2
k

)}
=

λ
(k)
T1

2
μ2

k

s2
k

E

{[∑n

l=1
λRl

(∑sk

i=1

∑sk

j=1
λ

(k)
Si

1
2 λ

(k)
Sj

1
2 h

(k)
i,1

∗
h

(k)
j,1 g

(k)
l,i

∗
g
(k)
l,j

)]2
}

(19)
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Fig. 2: Low SNR sum capacity of statistical beamforming in

double-scattering MIMO MAC for different correlation coefficients;

analytical approximations and Monte-Carlo simulations.

low SNR regime. Based on this result, we investigated the

effect of transmit, receive, and scatter correlation on the ca-

pacity.

6. APPENDIX: PROOF OF THEOREM 1

The determinant of a square matrix X has the following prop-
erties [7]:

d

du
ln |I + uX|∣∣

u=0
= tr (X) ,

d2

du2
ln |I + uX|∣∣

u=0
= −tr

(
X

2)
.

(14)

Using (5) and (14) yields

Eb

N0 min

=
ln 2

E
{
tr

(∑K

k=1 Ak

)} . (15)

From (8), we can easily obtain

Eb

N0 min

=
ln 2∑K

k=1 λ
(k)
T1μktr (ΦR)

(16)

to yield (9). Now consider S0. From (5) and (14), we have

S0 =
2E2

{
tr

(∑K

k=1 Ak

)}
E

{
tr

((∑K

k=1 Ak

)2)} . (17)

The denominator in (17) can be written as follows

K∑
k=1

E
{
tr

(
A

2
k

)}
+

K∑
k=1

K∑
l=1,l�=k

tr (E {Ak}E {Al}). (18)

Considering the first term in (18), E
{
tr

(
A2

k

)}
can be writ-

ten as in (19) (see top of this page), where H
(k)
1 =

[
g
(k)
i,j

]
,

H
(k)
2 =

[
h

(k)
i,j

]
, and the superscript (·)

∗
indicates conjugate

operation. Since 2
∣
∣h(k)

i,j

∣
∣2 ∼ χ2

2 and 2
∣
∣g(k)

i,j

∣
∣2 ∼ χ2

2, after
some manipulations, (19) can be simplified as

E
{
tr

(
A

2
k

)}
=

λ
(k)
T1

2
μ2

k

s2
k

[
s
2
k + tr

(
Φ

(k)
S

2)] [
n

2 + tr
(
Φ

2
R

)]
.

(20)

Now considering the second term in (18), it can be easily
obtained that

K∑
k=1

K∑
l=1
l�=k

tr (E {Ak}E {Al}) =

K∑
k=1

K∑
l=1
l�=k

λ
(k)
T1λ

(l)
T1μkμl tr

(
Φ

2
R

)
.

(21)

Substituting (20) and (21) into (17), and applying some ma-

nipulations, we obtain (10).
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