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ABSTRACT

Network coding in wired networks has been shown to achieve con-
siderable throughput gains relative to traditional routing networks.
While the ergodic capacity of wireless multihop networks is un-
known, the scaling of capacity with the number of nodes (n) has
recently received increasing attention. While existing works mainly
focus on networks with n source-destination pairs, this paper deals
with capacity scaling in any-to-any wireless links, where each node
communicates with all other nodes. Complex field network cod-
ing (CFNC) is adopted at the physical layer to allow n nodes ex-
changing information with simultaneous transmissions from multi-
ple sources. A hierarchical CFNC-based scheme is developed and
shown to achieve asymptotically (as n → ∞) optimal quadratic ca-
pacity scaling in a dense network, where the area is fixed and the
density of nodes increases. This is possible by dividing the net-
work into many clusters, with each cluster sub-divided into many
sub-clusters, hierarchically.

Index Terms— Capacity scaling, hierarchical transmission, com-
plex field network coding, multiple access channel (MAC), broad-
cast channel (BC).

1. INTRODUCTION

With the emergence of network science, capacity scaling laws in
large ad-hoc wireless networks have attracted growing interest, since
the exact ergodic capacity of wireless multihop networks is unknown.
Gupta and Kumar first studied the scenario where n nodes are ran-
domly located in the unit disk and each node communicates with
a random destination at a rate R(n) bits/second [1]. The problem
was to assess how fast the total network capacity increases with n,
i.e., the maximally achievable scaling of the total capacity C(n) =
nR(n). The results in [1] and [2] established that a multihop ar-
chitecture with conventional single-user decoding and forwarding of
packets can achieve C(n) at most Θ(

√
n), and the same scaling is

achieved by a scheme using only nearest-neighbor communication.
Different from the dense network in [1], where the total area is

fixed and the density of nodes increases, many subsequent works
dealt with extended networks, whose size grows to cover an increas-
ing area with the density of nodes remaining fixed. After successive
refinements, the nearest-neighbor multihop scheme for a bounded
transmit-power was shown to be order-optimal whenever the power
path loss exponent α is greater than 3 [3–5]. Recently, a scheme
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Fig. 1. An ad hoc wireless network.

based on hierarchical cooperation and distributed multi-input multi-
output (MIMO) communication was developed to identify the scal-
ing laws of random ad hoc networks for any path loss exponent
α ≥ 2 [5]. For the dense networks considered in this paper, [5]
established that the total capacity scales linearly with n.

The Gupta-Kumar model assumes that the signals received from
nodes other than the source constitute interference that is regarded
as noise degrading the communication link. Under this assump-
tion, direct communication between source and destination pairs is
not preferable, as the interference generated discourages most other
nodes from communicating. Complex field network coding (CFNC),
however, allows multiple users to transmit simultaneously to a des-
tination after precoding, which turns destructive interference into a
constructive signal [6]. This motivates the present paper’s utilization
of CFNC to achieve an improved capacity scaling law.

When traditional Galois field network coding (GFNC) is em-
ployed by random networks with n source-destination pairs, com-
pared to the scheme in [1], there is only a constant (as opposed to
a scaling) gain [7]. In contrast, this paper establishes that CFNC
achieves asymptotically optimal capacity scaling in a wireless net-
work, where each node transmits to all other nodes. This any-to-any
connectivity appears often in both tactical and commercial ad hoc
networks, as illustrated in Fig. 1.

As the distributed MIMO scheme of [5] does not attain a desir-
able capacity scaling in a network with n2 source-destination pairs,
the CFNC-based hierarchical scheme here divides the network (or
sub-network) into multiple clusters in each layer of the hierarchy.
Each layer includes five transmission phases, which entail MIMO
multiple access (MAC) and MIMO broadcast (BC) channels [8].
CFNC is used to overcome the interference during simultaneous
transmissions in MIMO-MAC and MIMO-BC. The number of clus-
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ters M per layer is critical to the total capacity scaling, which is now
defined as C(n) = n2R(n) for the n2 pairing network. With M in-
creasing slowly as n increases, the 5-phase scheme achieves a capac-
ity scaling of order Θ(n2−ε) in dense networks, for any ε > 0. As
the capacity scaling is upper-bounded by Θ(n2 log n), this scheme
is nearly optimal. Moreover, the associated capacity scaling expo-
nent approaches the upper bound as n grows large, which justifies
the asymptotic optimality claim.

Notation: Upper and lower case bold symbols denote matrices and
column vectors, respectively; (·)T denotes transpose; CN (0, σ2) the
circular symmetric complex Gaussian distribution with zero mean
and variance σ2; for a random variable γ, E[γ] denotes its mean;
C(n) = Θ(nt) means that limn→∞ C(n)/nt = K, for some
bounded constant K > 0.

2. MODELING

Consider n nodes uniformly and independently distributed in a square
of unit area in dense networks. Any node can be the source of in-
formation to all other nodes, and at the same time, any node can be
the destination of all source nodes. Hence, there can be n(n − 1)
possible source-destination pairs in total. Suppose that each source
has the same traffic rate to send to its destination node and a com-
mon average transmit power budget of P Joules per symbol. The
overall network throughput is C(n) = n(n − 1)R(n), where R(n)
is the achievable rate per source-destination pair. For simplicity in
exposition, suppose that every node is also the destination for itself,
that is C(n) = n2R(n) from now on.

We assume that wireless communication takes place over a flat
channel of bandwidth W Hertz around a carrier frequency fc with
fc � W . The complex baseband-equivalent channel gain between
node i and node k at time slot m is given by

Hik[m] =
√

Gr
−α/2
ik exp(jθik[m]) (1)

where rik is the distance between nodes, θik[m] denotes random
phase at time m, uniformly distributed in [0, 2π] and {θik[m]}n

i,k=1

is a collection of independent and identically distributed (i.i.d.) ran-
dom processes. Variables θik[m] and rik are also assumed inde-
pendent, while the gain G and the path-loss exponent α ≥ 2 are
assumed constant.

Note that the channel is random and depends on the location of
nodes and the channel phases. The locations are assumed to be fixed,
while the phases are allowed to vary in a stationary ergodic manner
(fast fading). All channel gains are assumed available to all nodes.
The signal received by node i at time m is

Yi[m] =

n∑
k=1

Hik[m]Xk[m] + Zi[m] (2)

where Xk[m] stands for the symbol sent by node k at time m and
Zi[m] ∼ CN (0, σ2).

3. CAPACITY SCALING

Capacity scaling quantifies how fast the information-theoretic ca-
pacity increases with the network size n. The pertinent metric is
provided by the scaling exponent e(n), which is defined as

e(n) := lim
n→∞

log C(n)

log n
. (3)

In networks for which the exact capacity expression is not available,
capacity scaling reveals how much throughput gain one can expect
as the network size grows. This in turn delineates the tradeoff be-
tween throughput gain and deployment cost, which is critical for the
network design.

3.1. Upper Bound

This section provides an information-theoretic upper bound on the
achievable scaling law for the aggregate throughput in the network
model of Section 2. Before pursuing practical communication strate-
gies, the following theorem establishes the best one can hope for.1

Theorem 1 The aggregate throughput in the network of Section 2 is
bounded above by

C(n) ≤ K′n2 log n (4)

with high probability (i.e., with probability going to 1 as n grows)
for some constant K′ independent of the number of nodes n.

Now let us consider an unrealistic example which achieves this
upper bound by capitalizing on standard properties of wireless com-
munications, namely: (p1) omnidirectional transmissions, (p2) in-
terference due to simultaneous transmissions from different sources,
and (p3) the half duplex constraint, which disallows simultaneous
packet transmission and reception by any node (due to the constraint
that nodes are equipped with a single transceiver). If one could by-
pass constraints p2 and p3, then all n nodes in the network would
be allowed to broadcast together, while at the same time, each node
would receive the messages from all other nodes. One can easily ver-
ify that each source-destination pair in such a scheme freed from p2
and p3, achieves capacity scaling R(n) = Θ(1), implying a total ca-
pacity scaling of C(n) = Θ(n2), with scaling exponent e(n) = 2.
We will term this kind of scheme asymptotically optimal, as the scal-
ing exponent difference from the upper bound of Theorem 1 is just
ε(n) = logn(log n), which disappears as n increases to infinity.

3.2. Lower bound

Having envisioned an asymptotically optimal scheme that is too ideal
to be true, one is motivated to look also for lower bounds on the
capacity scaling. To this end, notice first that any realistic scheme
obviously yields an achievable rate scaling, which at the same time
provides a lower bound on the capacity scaling of the wireless net-
work. Furthermore, the hierarchical cooperation scheme introduced
by [5], which achieves the asymptotically optimal capacity scaling
in a network of n pairs, does not lead to an asymptotically optimal
capacity scaling in the network of n2 pairs considered here. Actu-
ally, when the hierarchical cooperation scheme in [5] is modified to
apply in the network of n2 pairs, the capacity scaling is still linear:
C(n) = Θ(n) [10].

For the lower bound, the main result of this paper can be sum-
marized as follows:

Theorem 2 With α ≥ 2 and for any ε > 0, there exists a constant
Kε > 0 independent of n such that with high probability, the aggre-
gate throughput

C(n) ≥ Kεn
2−ε

(5)

is achievable by the network model of Section 2 with n2 source-
destination pairs.

1Omitted due to space limitations, the proof of this and other results stated
in this paper can be found in [9].
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Fig. 2. Hierarchical structure and time division of the 5-phase
scheme.

Theorem 2 asserts that the achievable capacity scaling can come
arbitrarily close to the upper bound of Theorem 1, i.e., one can devise
an asymptotically optimal scheme in the wireless network with n2

pairs. Instrumental to proving Theorem 2 is to show that the interfer-
ence property p2 can be mitigated with cooperation among nodes us-
ing the complex field network coding (CFNC) approach introduced
in [6] to achieve high throughput and the maximum diversity gain
provided by the wireless network.

4. HIERARCHICAL TRANSMISSIONS WITH CFNC

The goal of this section is to prove Theorem 2 by constructing a
realistic scheme based on hierarchical clustering and CFNC trans-
missions among clusters. To achieve an asymptotically optimal ca-
pacity scaling, the network is split into multiple (M ) subnetworks or
clusters, each covering a smaller square of area A = 1/M . Since
there are n nodes uniformly distributed in the network, there will
be on average nA = n/M nodes inside each cluster, and each
cluster will contain order n/M nodes with probability higher than

1 − Me−Λ(δ)n/M , where Λ(δ) is independent of n and satisfies
Λ(δ) > 0 when δ > 0 [5]. While n increases, each cluster should be
divided again into another M clusters, each containing n/M2 nodes.
This kind of hierarchical sub-division can be successively performed
until each cluster contains less than or equal to M nodes, which re-
sults in a total of logM (n) layers in the hierarchical clustering.2

Focusing on the transmission taking place in a particular layer
h + 1 of the hierarchy, consider that layer h has transmission rate
Rh, h = 1, . . . , logM (n). The last layer h = 1 corresponds to the
bottom layer of the hierarchy, while h = logM (n) denotes the top
layer which includes the entire network of size n. In layer h+1, each
of the M clusters operates at rate Rh and the entire transmission
proceeds in five phases:

Phase 1. Information Exchange within Each Cluster: As il-
lustrated in Fig. 2, clusters start communicating in parallel. Within
a cluster, each node distributes B bits to each of the other nodes, so
that at the end of this phase, each node has B bits from each of the
other nodes in the same cluster. This requires transmitting B bits for
each source-destination pair. As each node in the cluster is also the
destination of other nodes in the cluster, there is no extra traffic de-
mand introduced by this clustering operation. With this per-cluster
transaction occupying Th time slots, the throughput in Phase 1 is
B/Th, where h denotes the layer in the hierarchy.

Phase 2. MIMO-MAC using CFNC: In this phase, MIMO-
MAC transmissions from M − 1 clusters are directed to the sin-

2Unless stated otherwise, it is assumed for simplicity that n is an integer
power of M .

gle designated relay cluster. The remaining M − 1 clusters will be
henceforth termed source clusters. The relay cluster is chosen to
minimize the total transmit power in Phases 2 and 4. During the
MAC transmissions, the bits from the M − 1 source clusters are
transmitted using CFNC and arrive simultaneously at the nodes in
the relay cluster. Letting rSiR denote the distance between the mid-
points of the source cluster Si and the relay cluster R, the average
transmit power per node is P (rSiR)α/Mh at layer h. As in the pre-
vious section, precoding and symbol synchronization precede each
CFNC transmission. The nodes in cluster R quantize and accumu-
late the signals without decoding the information symbols in this
phase. From [6], it is clear that this phase requires B time slots, one
per bit transmitted from the nodes in each source cluster.

The per-cluster area at layer h is Ah = 1/M logM (n)−h, and the

per-node power is assumed upper bounded by P (Ah)α/2/Mh. For
the parallel operation to be reliable, it is necessary to further bound
the inter-cluster interference as in the following lemma.

Lemma 1 For a network of size n, consider clusters of size Mh

and area Ah operating as in the 5-phase scheme. Let each node
have an average power P (Ah)α/2/Mh. For α > 2, the interfer-
ence power received by a node from other simultaneously operating
clusters is upper-bounded by MKI1 with a constant KI1 indepen-
dent of n. For α = 2, the interference power is upper-bounded by
MKI2 log n with a constant KI2 independent of n. And the interfer-
ence signals received by different nodes in the cluster are zero-mean
and uncorrelated.

Phase 3. Joint Decoding in the Relay Cluster: Since nodes
inside the relay cluster form a distributed receive antenna array, each
node receives B MIMO-MAC transmissions during Phase 2. Thus,
each node in the cluster receives B observations, one from each
MIMO-MAC transmission, and each observation is to be conveyed
to all other nodes for decoding. Since these observations are real
numbers, nodes in the relay cluster quantize each observation to Q
bits; hence, there are now a total of at most QB bits to exchange
inside the relay cluster. Using exactly the same scheme as in Phase
1, it is clear that this phase requires QTh time slots.

Phase 4. MIMO-BC using CFNC: This phase entails MIMO-
BC transmissions from the relay cluster to the source clusters, as
depicted in Fig. 2. CFNC is used again as in the previous section,
and by analogy it follows that this phase is completed in B time
slots.

Phase 5. Joint Decoding in Source Clusters: Since each source
cluster receives B MIMO-BC transmissions in Phase 4, each node in
the source clusters quantizes and exchanges each observation similar
to the relay nodes during Phase 3 using a total of QTh time slots.

Phases 1, 3, and 5 contain further MIMO-MAC and MIMO-BC
transmissions at lower hierarchies, as illustrated in Fig. 2. Therefore,
all transmissions in this 5-phase scheme take place during Phases 2
and 4 in each layer of the hierarchy. The inter-cluster interference
power received at each node in Phase 4 also follows Lemma 1.

With each destination node capable of decoding the source bits
from the quantized signals it collects by the end of Phase 5, the total
number of time slots used in layer h + 1 is

Th+1 = (2Q + 1)Th + 2B, h = 1, 2, . . . , logM (n) − 1 (6)

where T1 = 2B. It then follows readily that

Th = B
(2Q + 1)h − 1

Q
, h = 1, 2, . . . , logM (n) (7)
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and the total number of time slots used in this 5-phase scheme is

Ttotal = TlogM (n) = B
(2Q + 1)logM (n) − 1

Q
. (8)

Before returning to the capacity scaling issue, it is useful to clar-
ify several definitions of the achievable rate. Following the conven-
tional definition in n pairing networks, the total rate is B/Ttotal.
While there are n2 source-destination pairs in the network here, we
will focus on the achievable rate for each source-destination pair.
The following lemma quantifies the capacity scaling of this 5-phase
scheme.

Lemma 2 When α > 2, the sum mutual information achieved by
the MIMO-MAC from M nodes to one node, each equipped with N
antennas, grows at least linearly with N . The other way around,
same scaling for the sum mutual information can be achieved in a
MIMO-BC transmission. When α = 2, the sum mutual information
in both MIMO-MAC and MIMO-BC grows at least on the order of
Θ(N/ log n) for a network of size n.

Consider first the case of α > 2. Recall that all transmissions
in this CFNC scheme are either MAC or BC. While joint encod-
ing and decoding is employed in other phases, during MAC and BC
transmissions, each cluster is treated as a single node with multi-
ple antennas. At layer h + 1, each node in the MAC from M − 1
nodes to one node, has N = Mh antennas. From Lemma 2, this
leads to a capacity scaling of Θ(N) for the MAC. While consider-
ing each transmission pair, the achievable capacity scaling per pair
is R(n) = Θ(N/(MN)) = Θ(1/M). As the rate during the BC
transmission is R(n) = Θ(1/M), the achievable capacity scaling
per pair in the 5-phase scheme suffers a penalty of M relative to
the conventional definition. Thus, the aggregate capacity scaling per
pair in the 5-phase scheme is

R(n) =
B

MTtotal
=

Q

M

1

(2Q + 1)logM (n) − 1
(9)

and as a result, the capacity scaling of the entire network is

C(n) = n2R(n) =
Q

M

n2

(2Q + 1)logM (n) − 1
. (10)

Using (10), the following lemma yields the capacity scaling as-
serted in Theorem 2.

Lemma 3 There exists a strategy to encode the observations at a
fixed rate of Q bits per observation and arrive at a sum mutual
information growth rate of Θ(N) (when α > 2) or Θ(N/ log n)
(when α = 2) for the resultant quantized MIMO-MAC and MIMO-
BC channels.

Having fixed Q, let us turn our attention to M . If M is also
fixed, the capacity scaling from (10) is

C(n) = Θ(n2−logM (2Q+1)) (11)

which is not as high as asserted by Theorem 2.
To achieve an asymptotically optimal capacity scaling promised

by Theorem 2, consider M = log n, which implies that the size of
each layer in the hierarchy M increases sufficiently slowly with the
network size n. Furthermore, it is prudent to seek an optimal M to
maximize the capacity scaling exponent. As M increases with n, the
capacity scaling from (10) is

C(n) = Θ
(
n2−logn(M)−logM (2Q+1)

)
. (12)

To maximize the capacity scaling exponent is equivalent to:

min
M

{logn(M) + logM (2Q + 1)} . (13)

The optimal solution is 2/
√

log2Q+1(n), when M is chosen as

log2Q+1(M) =
√

log2Q+1(n). As a consequence, the capacity

scaling of C(n) = Θ
(
n2−2/

√
log2Q+1(n)

)
is achievable, which

proves Theorem 2 for α > 2.
When α = 2, the per node capacity scaling incurs a penalty

of M log n compared to the conventional case given in Lemma 2.
Moreover, the number of transmissions in Phases 2 and 4 will scale
as log n, which makes the number of observations at each receiver
node also scale as log n. Hence, instead of QTh, we will have
QTh log n time slots in Phases 3 and 5. After incorporating these
modifications, the overall capacity scaling for α = 2 is [cf. (9) and
(10)]

C(n) = n2R(n) =
Q

M

n2

(2Q log n + 1)logM (n) − 1
. (14)

Although it is cumbersome to obtain the optimal M maximizing this
capacity scaling, we are ready to complete the proof of Theorem
2. To achieve a capacity scaling of Θ(n2−ε), it suffices to choose

M = (log n)log(log n), which yields a capacity scaling exponent

e(n) ≥ 2 − [log(log n)]2

log n
− 2

log(log n)
. (15)

With e(n) in (15) vanishing as n goes to infinity, this completes the
proof of Theorem 2.
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