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Abstract—We study the inversion of a random field from
pointwise measurements collected by a sensor network. We
assume that the field has a sparse representation in a known
basis. To illustrate the approach, consider the inversion of an
acoustic field created by the superposition of a discrete number
of propagating noisy acoustic sources. Our method combines
compressed sensing (sparse reconstruction by �1-constrained
optimization) with distributed average consensus (mixing the
pointwise sensor measurements by local communication among
the sensors). The paper describes the approach and demonstrates
its good performance with synthetic data for several scenarios of
practical interest.
Index Terms—Consensus algorithm, compressed sensing, field

inversion, field reconstruction, �1 optimization.

I. INTRODUCTION

We consider the inversion of a random field that is mon-
itored by a sensor network. To be concrete, we assume an
acoustic field generated by an unknown number, S, of discrete
noisy acoustic sources. The resulting field is the superposition
of the wavefield propagated by each of these sources. To
simplify the problem, we assume that the N sensors are placed
on the nodes of a uniform

√
N ×√

N grid spanning the field.
By field inversion, we mean estimating the number of sources,
their intensity levels, and their locations in the physical space
of interest.
A fusion center interrogates m of these sensors to invert

the field. Because of networks constraints this number is
much less than the total number of sensors. We can pose the
question of which subset is most informative, so that the field
inversion is as reliable as possible. However, since the sensors
take pointwise measurements, i.e., they take measurements
of the field only at their own location, this is a hopelessly
difficult combinatorial problem. We reformulate this question
by proposing a new algorithm where, first, the sensors mix
their states through local communication, after which the
fusion center samples m states with which to invert the field.
As will be seen, with appropriate mixing, the issue of which
sensors to interrogate becomes of secondary importance.
When N is large, our algorithm is more efficient than

the fully centralized version, which is unfeasible for sev-
eral reasons: 1) Single point of failure. If the fusion center
fails, the network becomes inoperative; 2) Scarce resources.
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Transmitting N measurements taxes the communication and
power constrained resources of the sensors and of the network.
3) Computation burden. Processing N measurements overbur-
dens the fusion center.
Our solution avoids these difficulties by distributing the

inversion load to all the sensors, allowing the fusion center
to sample m � N values. The two stages of the algorithm
are: 1) Mixing. Akin to a consensus algorithm, [1], the sensors
mix their current states with their neighbors in a distributed
fashion that requires only local communication; and 2) Sparse
inversion. Analogous to compressed sensing, [2], [3], a sparse
field reconstruction inverts the field by an �1 constrained
optimization from m sensor states, which are forwarded to
a fusion center.
We comment briefly on the organization of the overall

paper. Section II sets up the problem and reviews preliminary
concepts. Section III gives background on compressed sensing
and consensus. Section IV presents the proposed inversion
algorithm. Section V presents a numerical study. Finally, Sec-
tion VI concludes the paper and comments on generalizations
of our approach.

II. PROBLEM FORMULATION
A. Field Model

The field is defined on a finite
√

N × √
N lattice, L. We

stack the field values on a N -dimensional vector, x. The field
is generated by a finite number S of unknown discrete sources
with intensities Si, for i = 1, . . . , S, located at S nodes in the
grid. The sources are collected in the N -dimensional vector,
v, where vi = Si if source Si is at node i and 0 if there
is no source there. The field x is the superposition of the
S propagating wavefields, i.e., x = Dv, where Dij is the
propagation operator between nodes i and j. For example, in
3D free-space propagation, the values of D relate to a power
of the distance between the N nodes in the grid.

B. Measurement Model

The field is measured by N pointwise sensors, at the nodes
of the lattice L. Before sending m of the sensor values to the
a fusion center, the sensors mix their measurements through
local message passing in the network. The observations col-
lected at the fusion center are no longer pointwise samples, but
current sensor states as detailed in section III-A. The mixing
operation is linear, and will be denoted as M. We assume
no noise during the communication process. However, there
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may be additive noise in the initial field measurements, so the
measurement equation is as given in (1).

y = QM (Dv + z) (1)

The matrix, Q ∈ �m×N , is a row selection matrix, made of m

unique rows from the N -by-N identity matrix. The additive
noise vector is represented by z. The goal is to recover v

from y. Since the number of observations is smaller than the
dimensions of the field, the sensing matrixis underdetermined.
We propose to carry out an �1-inversion. In the noiseless case,
this amounts to solving the convex optimization, (P1).

(P1) : min
v

‖v‖1 subject to y = QMDv (2)

When there is additive noise, with ‖z‖2 ≤ ε, we will change
the constraints of the optimization to be as shown in (P2).

(P2) : min
v

‖v‖1 subject to ‖y − QMDv‖2 ≤ ε (3)

Compressed sensing theory finds that there are circum-
stances in which the solution to the �1 optimization coincides
with the solution to the optimal problem; the �0 minimiza-
tion. However, certain incoherence properties of the sensing
matrices must be satisfied and will be discussed in III-B.

III. BACKGROUND: COMPRESSED SENSING AND
CONSENSUS

The optimization in (2) is easily recognizable as a com-
pressed sensing recovery algorithm. Using common notation
in compressed sensing, e.g., [3], the representation matrix, Ψ,
for our problem is the propagation matrix D, and the sensing
matrix, Φ, corresponds to QM. For a reliable inversion of the
field, we need the sensing matrix, Φ, to be incoherent with Ψ.
An efficient way to generate a linear operator, M, is by

local message passing between adjacent sensors. We propose
a distributed iterative mixing algorithm, which is derived
from average consensus algorithms, to accomplish this. The
next two sections summarize background on consensus and
compressed sensing.

A. Consensus algorithm

There is an extensive literature on average consensus that
finds application in many sensor networks and multiagent
coordination problems. Average consensus is a distributed,
iterative algorithm that computes the average of a large number
of quantities, each of which is available at a node of the
network, we refer the reader to the recent overview, [1], and to
the references therein. Our own work on consensus includes
[4], [5], [6], [7] that study distributed inference under a variety
of network conditions and the impact of the topology and other
network parameters on the convergence rate and performance
of the algorithm. In its simplest formulation, sensors update
iteratively their state by a linear weighted combination of
their current state with the states of their neighbors. This
iterative algorithm converges at each sensor, under a broad
set of conditions, to the average of the initial sensor states.
Formally, stacking the states xn(k) at the N sensors of the

network and at time k in the vector xk, average consensus
iterates as

xk+1 = Wxk = W k+1x0, k ≥ 0, (4)

WhereW is the (sparse) matrix of weights and x0 is the vector
of initial states. In average consensus, under broad conditions,

lim
k→∞

W k =
1

N
11T , (5)

where 1 is a vector of 1’s. The matrix of weightsW reflects the
topology, or neighborhood structure, of the network, i.e., with
which sensors does each sensor communicate. When weights
are chosen to have a uniform value α over all links, W may
be expressed in terms of the identity matrix I and the discrete
Laplacian of the network L

W = I − αL

The optimal value for the constant α is given in [8].

B. Compressed sensing

Compressed sensing shows that when an orthonormal basis
Φ is chosen such that it displays a low coherence, as defined
in (6), with an orthonormal Ψ, a relatively small number of
selected measurements will, with overwhelming probability,
yield perfect reconstructions of v (and therefore x), [3], [2],
[9]. In these cases the solution to (P1) coincides with the
optimal �0 minimization.

μ (Φ,Ψ) =
√

N · max
1≤i,j≤N

| < φi, ψj > | (6)

1 ≤ μ ≤
√

N

Where the φT
i are the rows of Φ and ψj the columns of Ψ.

Lower coherence implies a smaller number of measurements
needed for reliable inversion, [3].
Randomly generated Φ tend to be incoherent with all

bases. A random orthonormal basis created by drawing entries
from an i.i.d. Gaussian distribution and orthonormalizing has
high probability of having a coherence around

√
2 log N ,

[3]. Motivated by this result, our algorithm draws consensus
weights from independent Gaussian distributions, to create
sensing matrices with low coherence.

IV. FIELD INVERSION BY CONSENSUS AND COMPRESSED
SENSING (FICCS)

This section presents the FICCS (read as “fix”) algorithm for
unknown sparse field inversion. Sensors in the network collect
noisy measurements of the field, mix their measurements using
weighted adjacency matrices Wi, and then transmit a small
subset of M sensor values to a centralized location.
Assuming noisy sensor measurements, the observation vec-

tor y, after mixing, is given by

y = Q

(
k∏

i=1

Wi

)
(Dv + z) (7)

= QM (Dv + z) (8)
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To perform the �1 optimization, the fusion center needs to
know the values of the propagation, weights, and selection
matrices, D, {Wi}1≤i≤k (k is the number of mixing steps),
and Q, respectively. This can be accomplished by coordination
among the sensors prior to deployment, where they choose a
set of random weights to use during operation and ensure that
they are normalized such that the rows of Wi have unit-norm.
Our numerical studies will compare alternate strategies re-
garding the mixing weights: different weights at each mixing,
{Wi}1≤i≤k, versus constant weights, Wi ≡ W , 1 ≤ i ≤ k.
The additive noise, z, is modeled as i.i.d. and Gaussian with

variance σ2
z . As a recovery algorithm, the fusion center per-

forms the convex optimization (P2), defined in (3), choosing a
threshold based on σ2

z , using the inverse chi-squared function
in Matlab, as in (9).

ε =
√

chi2inv(0.99,m)σ2
z (9)

Performing this optimization amounts to solving a second-
order cone program,[3]. This convex problem can be handled
by efficient numerical solvers. We used the cvx package
for Matlab, [10], in our particular tests. The bounded con-
straint in (3) makes (P2) fit the semidefinite program frame-
work (SDP), [11]. For the threshold ε given in (9), 99% of
the noise vectors will satisfy ‖z‖2 ≤ ε. Although not every
noise vector satisfies the bound, we will find the performance
of (P2) to be satisfactory.
Results from Robust Compressed Sensing, [12], [13], show

that, when an additive noise vector, e, as in y = Ax + e,
has a bounded �2-norm, and the matrix A has low mutual
coherence, the recovery program, (P2), leads to low �2-error
solutions. Furthermore, these results show that the �2-error of
the recovered x is proportional to the noise energy bound ε,
where the proportionality constant is a function of the sparsity
(number of sources) S,[12],

‖x − x̂‖2 ≤ CS · ε (10)

The mutual coherence is defined in [13] as

MA := max
1≤k,j≤n

∣∣[AT A]k,j

∣∣ (11)

Our experimental results confirm, as indicated by the results
in [13], that the performance of the inversion algorithm in
the presence of noise is inversely related to the mutual
coherence MA of A = (QMD).

V. NUMERICAL STUDIES
To test the FICCS approach, we simulated sparse inversion

experiments for a 32 × 32 (N = 1024) grid of sensors. We
characterize the inversion performance (vertical axes in the
plots) by: 1) the probability of recovery, when the measure-
ments are noiseless; or 2) the ratio of �2 error to the error
bound ε. We plot the number of selected measurements, m,
as the independent variable, and study the impact on per-
formance of: 1) weights strategy–Gaussian changing mixing
weights {Wi} versus constant mixing weights W , set to the
optimal uniform consensus weights, [8]; 2) communication
graph topology–a Erdös-Rényi random graph topology versus
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Fig. 1. Field inversion example.

a nearest 8 neighbors topology, both with the same number
of communication channels (graph edges); 3) the number k of
mixing steps–if k is small, the mixing level may be insufficient
because each sensor state carries little information about the
other sensor measurements, while if k is very large, the mixing
leads to average consensus, which is undesirable.
Fig. 1 shows on the left the image sensed by the full array

of N = 1024 sensors from 10 random sources; superimposed
at the center are white crosses marking the locations of the
m = 300 selected sensors used to perform the inversion. The
additive measurement noise has a variance of σ2

z = 10−2. The
full grid of sensors are connected with a nearest 8-neighbor
graph with 7, 812 edges, much smaller than the roughly 106

edges of the complete graph. The right panel shows the result
of the field inversion v̂, after k = 16 mixings with Gaussian
mixing weights. The sources’ locations and intensities are
recovered with an �2 = 5.18 error. Comparing to the recovery
error without mixing, which is 11.83, we see an improvement
using local sensor coordination; and the oracle error (knowing
the source locations and estimating intensities) is 2.40 due to
noise. Although the selected sensor locations are away from
most sources, we find that if sufficient mixing is performed,
the field recovery performance is quite robust to the locations
of the sensors communicating with the fusion center.
Figure 2 shows a study of mixing weight strategies over

100 Monte Carlo runs with randomly generated source vectors
and selection matrices. The communication graph is again
the nearest 8 neighbors and there are 3 unknown sources.
The upper plots compare the fraction of perfect recoveries
to the number of seleted measurements, m, while lower plots
show the measured coherences. The keys show the number of
mixing iterations: k = 0 means no mixing and corresponds to
the worst performance observed. The leftmost line is an upper
bound on the performance, using a random orthonormal basis,
Φ, which is unachievable by local mixing. The performance
due to mixing improves faster using the optimal consensus
weights, since they are designed to mix very quickly. This
is encouraging since less prior coordination is required when
sensors can use uniform constant weights. However, the per-
formance of the consensus strategy suffers when there is too
much mixing (k = 256), due to a loss of linear independence
of the measurements. Although the results of this study are
shown for randomly selecting the reporting sensors, when we
used the strategy of selecting a contiguous middle region, as
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Fig. 2. Impact of weights strategies, random weights (left) vs. constant opti-
mal consensus weights (right), at various mixing levels, k. The corresponding
coherences of sensing and propagation matrices are shown below.

in fig. 1, we found the consensus weights were less robust to
selection strategy than the non-constant Gaussian weights.
Figure 3 shows a study between two graph topologies with

small amounts of measurement noise, σ2
z = 0.01. There are 3

unknown sources and each curve is the result of 100 Monte
Carlo trials. The performance measure (left) is the ratio of the
�2 estimation error to the noise energy bound, ε, as a function
of the number of selected measurements, m. In the key, NN,
represents a nearest 8 neighbor topology, while ER is for the
randomly generated Erdös-Rényi graph (drawn uniformly from
connected graphs with the same number of edges as the NN
graph), and k gives the number of mixing iterations.
The Erdös-Rényi graph yields lower CS’s and therefore

smaller �2-errors than the nearest neighbor topology. Contrast-
ing with the noiseless case, where larger mixing levels lead to
better performance, here k = 4 is better than the k = 0 (no
mixing) and k = 1024 (heavy mixing) strategies. No mixing
again gives the worst performance, showing that moderate
mixing is required, while large amounts of mixing can be
detrimental. The right panel of 3 shows the measured mutual
coherence of A = ΦΨ. Overall, when this quantity is low, the
observed ratio CS is also low, agreeing with the relationship
predicted by robust compressed sensing. The closeness of the
error ratio to that of the random orthonormal basis shows that
the mixing procedures and Erdös-Rényi topology effectively
create conditions for reliable recovery.

VI. CONCLUSION AND GENERALIZATIONS
This paper describes an algorithm to invert a random field

defined over a finite lattice, L. The algorithm combines the
ideas of local communications from consensus and sparse
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Fig. 3. Impact of topology. Measured ratios, CS , for 3 sources and σ2
z =

0.01 (left). Average mutual coherence of the product A = ΦΨ matrices
(right).

recovery from compressed sensing to reduce the number of
measurements to send to a fusion center. The fusion center
performs an �1-inversion to recover the sparse input signal.
Simulation tests demonstrate the good performance of local
mixing for creating adequate sensing bases.
Preliminary tests show the strategy of drawing new random

weights for each mixing iteration to yield sensing matrices
with good properties for sparse signal recovery. Future work
will include investigating ways to design weights for mixing
matrices to maximize compressed sensing properties as well
as adjacency graphs with good mixing properties for sparse
recovery.
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