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ABSTRACT

We consider the task of recovering correlated vectors at a central
decoder based on fixed linear measurements obtained by distributed
sensors. A general formulation of the problem is proposed, under
both a universal and an almost sure reconstruction requirement. We
then study a specific correlation model which involves a filter that is
sparse in the time domain. While this sparsity assumption does not
allow reducing the description cost in the universal case, we show
that large gains can be achieved in the almost sure scenario by means
of a novel distributed scheme based on annihilating filters. The ro-
bustness of the proposed method is also investigated.

Index Terms— Annihilating Filter, Compressive Sampling,
Distributed Sensing, Sparse Reconstruction

1. INTRODUCTION

Consider two signals that are linked by an unknown filtering oper-
ation, where the filter is sparse in the time domain. Each signal is
independently observed by a different sensor, which sends certain
linear measurements of that signal to a central decoder. In a similar
spirit to the Slepian-Wolf problem in distributed source coding [1],
we study how the correlation induced by the above model can be
exploited to reduce the number of measurements needed for perfect
reconstruction, without any inter-sensor communication.

The present work is related to the distributed compressed sens-
ing framework introduced by Baron et al. [2], where the authors
studied the distributed sampling of signals correlated through certain
joint sparsity models. The first contribution of this paper is a novel
correlation model which relates two distributed signals through a
sparse filtering operation, without requiring the signals themselves
to be sparse in any domain. Such a model can be useful in describ-
ing the signal correlation in several practical scenarios, including,
e.g., that between the transmitted and received signals in an unknown
multipath environment. The second contribution is a concrete dis-
tributed sampling and reconstruction scheme that exploits the exist-
ing correlation, and recovers the original signals in an efficient and
robust way.

Our goal in this paper is twofold. First, from a theoretical point
of view, our interest is to determine the minimum number of mea-
surements required at each sensor to allow for a perfect reconstruc-
tion of the original data. Second, from a practical perspective, we
seek distributed sampling and reconstruction schemes that accom-
plish this task in a computationally efficient manner.
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After a description of the considered model, we state in Sec-
tion 2 a general formulation of the distributed sensing problem. In
Section 3, we demonstrate a somewhat surprising result, namely, that
if one requires all possible vectors to be reconstructed perfectly, the
aforementioned correlation between the observed vectors cannot be
exploited. In this case, the simple strategy of sending all the coef-
ficients is optimal. However, if one only considers the perfect re-
covery of almost all vectors, then substantial gains can be achieved
by means of a computationally efficient distributed algorithm based
on annihilating filters [3, 4]. This scheme is presented in Section 4.
Moreover, it is shown how the proposed method can be made robust
to model mismatch using an iterative procedure due to Cadzow [5].
Finally, we present, in Section 5, some simulation results to illustrate
the robustness of our scheme with respect to additive noise. Conclu-
sions are given in Section 6.

2. SIGNALMODEL AND PROBLEM STATEMENT

2.1. Proposed Correlation Model

Consider two signals x1(t) and x2(t), where x2(t) can be obtained
as a filtered version of x1(t). In particular, we assume that

x2(t) = (x1 ∗ h)(t) , (1)

where h(t) =
∑K

k=1
ckδ(t − tk) is a stream of K Diracs with un-

known delays tk and coefficients ck . The above model can be used
to characterize the correlation between a pair of signals of interest
in various practical applications. Examples include the correlation
between transmitted and received signals under multipath propaga-
tion with unknown channel condition, or the spatial correlation be-
tween signals recorded by two closely-spaced microphones in a sim-
ple acoustic environment composed of a single source.

In this work, we study the following finite-dimensional version
of the model given in (1).

Definition 1 (Correlation Model) The signals of interest are two
vectors x1 = (x1[0], . . . , x1[N−1])T and x2 = (x2[0], . . . , x2[N−
1])T , linked to each other through a circular convolution

x2[n] = (x1 � h)[n] for n = 0, 1, . . . , N − 1, (2)

where h = (h[0], . . . , h[N − 1])T ∈ R
N is an unknown K-sparse

vector, that is, ‖h‖0 = K.

Themodel in (2) can be seen as an approximation of the original con-
tinuous model given in (1). In practice, the finite-dimensional sig-
nals x1 and x2 can be obtained from x1(t) and x2(t) through sam-
pling and windowing, and the filtering operation in (1) may then be
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Fig. 1. Distributed sensing setup. Sensor i provides a Mi-
dimensional version of its observation xi by means of a linear trans-
form Ai (i = 1, 2). The central decoder reconstructs the original
vectors based on the received measurements.

approximated by the circular convolution through appropriate zero-
padding. A popular and computationally efficient approach is to use
a discrete Fourier transform (DFT) filter bank for this purpose.

In what follows, it is often convenient to use the notation of a
stacked vector xT def

= (xT
1 , xT

2 ) ∈ R
2N . We denote by X the set

of all stacked vectors such that its components x1 and x2 satisfy (2)
for some K-sparse vector h.

2.2. Distributed Sensing and Problem Statement

We consider the problem of sensing xT = (xT
1 , xT

2 ) in a distributed
fashion, by two independent sensors taking linear measurements of
x1 and x2, respectively. As depicted in Figure 1, suppose that the
ith sensor (i = 1, 2) takes Mi linear measurements of xi. We can
write

yi = Ai xi ,

where yi ∈ R
Mi represents the vector of samples taken by the ith

sensor, and Ai is the corresponding sampling matrix. Considering
the stacked vector yT def

= (yT
1 , yT

2 ), we have y = Ax, where A is
obtained as

A =

[
A1 0M1×N

0M2×N A2

]
. (3)

Note that the block-diagonal structure ofA is due to the fact that x1

and x2 are processed separately. This is in contrast to the centralized
scenario, where x1 and x2 can be processed jointly, in which case
the matrixA can be arbitrary.

The measurements y1 and y2 are transmitted to a central de-
coder, which attempts to reconstruct the vector x through some (pos-
sibly nonlinear) mapping ψ : R

M1+M2 �→ X as

x̂ = ψ(y).

By analogy to the Slepian-Wolf problem in distributed source
coding [1], the natural questions to pursue in the above sampling
setup are the following:
1. What choices of sampling pairs (M1, M2) will allow us to
reconstruct signals x ∈ X from their samples?

2. What is the loss incurred by the distributed infrastructure over
the centralized scenario in terms of the total number of mea-
surementsM1 + M2?

3. How can we reconstruct the original signals from their sam-
ples in a computationally efficient way?

In what follows, we first answer the above questions in the case of
universal reconstruction (Section 3), that is, when all signals must
be perfectly recovered. We prove that the sparsity assumption on
h does not allow reducing the minimum number of measurements.
We then consider almost sure reconstruction (Section 4), when only

almost all signals must perfectly reconstructed. In this case, we
demonstrate that the correlation between x1 and x2 can indeed be
exploited by means of a computationally efficient algorithm. We
further show how the proposed method can be made robust to noise
and model mismatch. Finally, some simulation results are presented
(Section 5).

3. UNIVERSAL RECOVERY

Let A1 and A2 be the sampling matrices used by the two sensors,
and A be the block-diagonal matrix defined in (3). We first focus
on finding those A1 and A2 such that every x ∈ X is uniquely
determined by its sampling dataAx.

Definition 2 (Universal Achievability) We say a sampling pair
(M1, M2) is achievable for universal reconstruction if there exists
fixed measurement matricesA1 ∈ R

M1×N andA2 ∈ R
M2×N such

that the set

B(A1, A2)
def
=

{
x ∈ X : ∃x

′ ∈ X with x �= x
′ butAx = Ax

′
}
(4)

is empty.

Intuition suggests that, due to the correlation between the vectors x1

and x2, the minimum number of samples needed to perfectly de-
scribe all possible vectors x can made smaller than the total number
of coefficients 2N . The following proposition shows that, surpris-
ingly, this is not the case.

Proposition 1 A sampling pair (M1, M2) is achievable for univer-
sal reconstruction if and only ifM1 ≥ N andM2 ≥ N .

Proof: Let us consider two stacked vectors xT = (xT
1 , xT

2 ) and
x′T = (x′T

1 , x′T
2 ), each following the correlation model (2). They

can be written under the form

x =

[
IN

C

]
x1 and x

′ =

[
IN

C ′

]
x

′

1 ,

whereC andC ′ are circulant matrices with vectors h and h′ as the
first column, respectively. It holds that

x − x
′ =

[
IN −IN

C −C ′

] [
x1

x′

1

]
.

Moreover, we have that

rank
[
IN −IN

C −C ′

]
= N + rank

(
C − C

′
)

.

When C − C ′ is of full rank, the above matrix is of rank 2N . This
happens, for example, when K = 1 with C = 2IN and C ′ = IN .
In this case, x − x′ can take any possible values in R

2N . Hence,
a necessary (and sufficient) condition for the set (4) to be empty is
that the block-diagonal matrixA is a M × 2N -dimensional matrix
of full rank, with M ≥ 2N . In particular, A1 and A2 must be
full rank matrices of sizeM1 × N andM2 × N , respectively, with
M1, M2 ≥ N . Note that, in the centralized scenario, the full rank
condition would still require to take at least 2N measurements. �

As a direct consequence of the above result, each sensor can
process its vector independently without any loss of optimality. In
particular, the simple strategy of sending all observed coefficients
is optimal. Moreover, it is seen in the proof of Proposition 1 that
there is no penalty associated with the distributed nature of the setup.
In other words, the total number of measurements cannot be made
smaller than 2N if the vectors x1 and x2 are processed jointly. The
region of achievable sampling pairs is depicted in Figure 2.
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Fig. 2. Achievable sampling region for universal reconstruction
(shaded area), and sampling pairs achieved by the proposed dis-
tributed sensing scheme for almost sure reconstruction (dashed line).

4. ALMOST SURE RECOVERY

As shown in Proposition 1, universal recovery is a rather strong re-
quirement to satisfy since we have to take at least N samples at
each sensor, without being able to exploit the existing correlation.
In many situations, however, it is sufficient to consider a weaker re-
quirement, which aims to find measurement matrices that permit the
perfect recovery of almost all signals from X . In this case, the set X
is endowed with a probability distribution.

Definition 3 (Almost Sure Achievability) We say a sampling pair
(M1, M2) is achievable for almost sure reconstruction if there exist
fixed measurement matricesA1 ∈ R

M1×N andA2 ∈ R
M2×N such

that the set B(A1, A2), as defined in (4), is of probability zero.

In contrast to the universal scenario, we now demonstrate, by means
of a novel distributed sensing algorithm, that the correlation between
the vectors x1 and x2 can be exploited to reduce the total number of
measurements needed.

4.1. Distributed Sensing Algorithm

The proposed distributed sensing scheme is based on a frequency-
domain representation of the input signals. Let us denote by X1 ∈
C

N andX2 ∈ C
N the DFTs of the vectors x1 and x2, respectively.

The circular convolution (2) can be expressed as

X2 = H 
 X1 , (5)

whereH ∈ C
N is the DFT of the filterh and
 denotes the element-

wise product.
We first show how a decoder can almost surely recover the un-

known filter h using only the firstK +1 DFT coefficients of x1 and
x2. This is achieved using an annihilating filter approach as follows.
The DFT coefficients of the filter h are given by

H [m] =

K∑
k=1

cke−j 2π

N
nkm form = 0, 1, . . . , N − 1. (6)

The sequence H [m] is the sum of K complex exponentials, whose
frequencies are determined by the positions nk of the non-zero coef-
ficients of the filter. It can be shown [6] thatH [m] can be annihilated
by a filter A[m] of degree K whose roots are of the form ej2πnk/N

X1

X2

K + 1 �N/2� − K

Fig. 3. Sensors 1 and 2 both send the firstK +1DFT coefficients of
their observation, but only complementary subsets of the remaining
frequency components (up to the Nyquist frequency).

Algorithm 1
1: Sensors 1 and 2 send the firstK + 1 DFT coefficients of x1 and

x2, respectively. They also send complementary subsets of the
remaining DFT coefficients (up to the Nyquist frequency).

2: The decoder computes 2K consecutive DFT coefficients of h

from (8).
3: The decoder retrieves the filter h using the annihilating filter
method.

4: The decoder reconstructs x1 and x2 from (5) using h and the
remaining DFT coefficients of x1 and x2.

for k = 1, 2, . . . , K. The coefficients of this filter satisfy

A[m] ∗ H [m] =
K∑

i=0

A[i]H [m − i] = 0 ,

or in matrix form,⎡
⎢⎢⎢⎣

H [0] H [−1] · · · H [−K]
H [1] H [0] · · · H [−K + 1]
...

...
...

...
H [K − 1] H [K − 2] · · · H [−1]

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A[0]
A[1]
...

A[K]

⎤
⎥⎥⎥⎦ = 0 .

(7)
The above matrix is of sizeK × (K + 1) and is built from 2K con-
secutive DFT coefficients. Moreover, it can be shown to be of rank
K so that its null space is of dimension one. Therefore, we can find
a solution to the above system by means of its singular value decom-
position (SVD). Note that, due to the conjugate symmetry property,
the coefficients of the matrix in (7) can be computed as

H [m] =
X2[m]

X1[m]
and H [−m] = H∗[m] (8)

provided thatX1[m] is non-zero form = 0, 1, . . . , K. This happens
almost surely if its distribution is, for example, continuous. Once the
coefficients of the annihilating filter have been obtained, it is simply
a matter of computing its roots to retrieve the unknown positions nk .
The filter weights ck can then be recovered by means of the linear
system of equations (6).

Based on the above considerations, our distributed sensing
scheme can be described as follows. Both sensors send the first
K + 1 DFT coefficients of their signal to the decoder (2K + 1
real values each). They also transmit complementary subsets of
frequency indices up to the Nyquist frequency (N − 2K − 1 real
values in total). This is illustrated in Figure 3. The first K + 1
DFT coefficients allow to almost surely reconstruct the filter h. The
missing frequency components of x1 (resp. x2) are then recovered
from the available DFT coefficients of x2 (resp. x1) using the re-
lation (5). The method is summarized in Algorithm 1. In terms of
achievability, we have thus shown the following result.
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Proposition 2 A sampling pair (M1, M2) is achievable for almost
sure reconstruction if

M1 ≥ min {2K + 1, N} ,

M2 ≥ min {2K + 1, N} ,

and M1 + M2 ≥ min {N + 2K + 1, 2N} .

In contrast to the universal reconstruction, the total number of mea-
surements can be reduced from 2N to N + 2K + 1. Typically,
K 
 N , such that a large gain is achieved by the proposed dis-
tributed sensing scheme. This is depicted in Figure 2.

It should be emphasized that Proposition 2 only provides an
achievability result, that is, its conditions are sufficient but not neces-
sary. In fact, it can be shown that, ifN andK +1 are not both even,
a combinatorial approach allows reducing the factor 2K in the above
lower bounds to K. Note also that the proposed correlation model
can be extended to filters which admit a sparse representation in an
arbitrary basis. In this case, one can use sampling techniques which
involve taking random frequency measurements, and reconstruction
methods based on �1 minimization, as presented in [7].

4.2. Robustness to Model Mismatch

Noise or, more generally, model mismatch makes the solution dis-
cussed previously rarely directly applicable in practice. Instead, ro-
bustness must be included by sending additional measurements. This
redundancy allows solving (7) using a total least square approach and
then finding the mean square solution to (6). To further improve ro-
bustness, we resort to an iterative method devised by Cadzow [5]. In
our context, it can be summarized as follows. Sensor i transmits the
first L + 1 DFT coefficients of xi (i = 1, 2) with L ≥ K. A matrix
of dimension L×(L+1) of the form (7) is then built from these mea-
surements. In the noiseless case, this matrix has two key properties:
(i) it is of rank K and (ii) it is of Toeplitz form. In the noisy case,
these two properties can be enforced by alternatively performing the
two following steps:
(i) Enforce rankK by setting the L−K smallest singular values
to zero.

(ii) Enforce Toeplitz form by averaging the coefficients along the
diagonals.

The above procedure is guaranteed to converge to the matrix which
exhibits the desired properties and is the closest in Frobenius norm
to the noisy one [5]. The denoised filter DFT coefficients are then
extracted from the first row and first column, and used to solve the
systems (6) and (7), as mentioned above.

5. SIMULATION RESULTS

To assess the robustness of the proposed scheme, we evaluate it
with respect to additive noise. We assume that the filter is of length
N = 128 but has only K = 2 non-zero coefficients. Independent
white Gaussian noise is added to the filter to meet a desired signal-
to-noise ratio (SNR). Figure 4 shows the mean squared error (MSE)
on the reconstruction of the filter as a function of the SNR, with
and without Cadzow’s denoising procedure. The results have been
averaged over 20’000 realizations. The different sets of curves corre-
spond to L = 3, 6, 14 (top to bottom). We observe that the MSE can
be significantly reduced by sending just a few more measurements
than the minimum required. Moreover, the gain provided by Cad-
zow’s procedure increases as the number of transmitted coefficients
increases.

5 10 15 20 25 30 35 40 45 50

−25

−20

−15

−10

−5

0

5

SNR (dB)

M
S

E
 (d

B
)

Without Cadzow’s denoising
With Cadzow’s denoising

Fig. 4. Reconstruction error of the filter in additive white Gaussian
noise, with and without Cadzow’s denoising. The parameters are
N = 128 and K = 2. The different sets of curves correspond to
L = 3, 6, 14 (top to bottom).

6. CONCLUSIONS

A general formulation of the distributed sensing problem has been
proposed. The setup has been studied in more details for a specific
correlation model involving a sparse filter. In this context, both uni-
versal and almost sure reconstruction were addressed. A distributed
sensing scheme was presented, together with a method to make it
robust to model mismatch. Current research efforts focus on the ap-
plication of the proposed method to the distributed coding of spatial
audio, as well as the determination of achievable sampling regions
for other correlation models of practical interest.
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