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ABSTRACT
This paper considers robust transmit strategies, against the imper-
fectness of CSIT, for MIMO communication systems. Following a
deterministic model that assumes the actual channel inside an ellip-
soid centered at a nominal channel, we maximize the worst-case re-
ceived SNR. It is shown that, for a general class of power constraints,
the resulting maximin problem can be equivalently transformed into
a convex problem, or even further into a semidefinite program. The
most important result is that the optimal transmit directions are just
the right singular vectors of the nominal channel under some mild
conditions. This result reduces the complicated matrix-valued prob-
lems to scalar power allocation problems, for which the closed-form
solutions are provided.
Index Terms— MIMO, imperfect CSIT, worst-case robust de-

signs, maximin, convex optimization, SDP.

1. INTRODUCTION
The performance of Multi-input multi-output (MIMO) systems de-
pends, to a substantial extent, on the quality of the channel state in-
formation (CSI). In case of no CSI at the transmitter (CSIT), space-
time coding techniques [1] can be used to harvest the diversity gain.
When the transmitter knows the channel perfectly, on the other hand,
the full benefit of CSIT is exploited by precoding techniques [2, 3].
Instead of these two extreme assumptions on CSIT, a practical com-
munication system typically has to confront an intermediate case,
i.e., CSIT available but imperfect.

There are two classes of models frequently used to characterize
imperfect CSI: the stochastic and the deterministic (or worst-case)
models. In the stochastic model, the channel is usually modeled as a
complex random matrix with the mean and/or the covariance avail-
able at the transmitter. The system design is then based on optimiz-
ing the average or outage performance [4–7]. On the other hand, the
deterministic model assumes that the instantaneous channel, though
not exactly known, lies in a known set of possible values. In this
case, the robust design [8–11] aims at optimizing the worst-case
performance, and achieves a guaranteed performance level for any
channel realization in the set.

In this paper, we consider robust transmit strategies for MIMO
communication systems, based on the worst-case optimization, us-
ing the deterministic model of imperfect CSIT that is similar to (but
more general than) that used in [8, 11]. Specifically, while assuming
perfect CSI at the receiver, for the transmitter, we assume that the ac-
tual channel lies in an ellipsoid centered at a nominal channel. The
design objective is to maximize the worst-case received signal-to-
noise ratio (SNR) [10, 11], or to minimize the worst-case Chernoff
bound of the pairwise error probability (PEP) [6] if a space-time
block code (STBC) [1] is used. Our first main result is that, for a
general class of power constraints, the formulated maximin problem
can be equivalently transformed into a convex optimization problem
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that can be efficiently solved in polynomial time. For some power
constraints, the problem simplifies further to a semidefinite program
(SDP) [13], a very tractable form of convex optimization.

In light of the optimality of the channel-diagonalizing structure
in the cases of perfect CSIT [2, 3] and statistical CSIT with mean
or covariance feedback [4–7], one may wonder whether it still holds
in the deterministic model. As the second main contribution of this
paper, we answer affirmatively this question by proving that, for the
worst-case design, the optimal transmit directions are the right sin-
gular vectors of the nominal channel under some mild conditions.
As a special case of our framework, it follows that the transmit di-
rections imposed in [10, 11] (without any justification) are actually
optimal. Consequently, the complicated matrix-valued problems can
be simplified to scalar power allocation problems without any loss
of optimality. Our third main result consists of providing the closed-
form solutions to the resulting power allocation problems.

2. PROBLEM STATEMENT
We consider a point-to-point communication system equipped with
N transmit and M receive antennas. Mathematically, the system
can be represented by a linear model as y = Hx + n, where x ∈
C

N is the transmitted signal vector, H ∈ C
M×N is the channel

matrix, y ∈ C
M is the received signal vector, and n ∈ C

M is a
circularly symmetric complex Gaussian noise vector with zero mean
and covariance matrix σ2

nI, i.e., n ∼ CN
(
0, σ2

nI
)
.

To model imperfect CSI deterministically, we assume thatH be-
longs to the elliptical uncertainty regionH �

{
H :

∥∥H− Ĥ
∥∥ ≤ ε

}
centered at the nominal channel Ĥ. Furthermore, by defining the
channel error Δ � H − Ĥ, H ∈ H can be equally described by
Δ ∈ E = {Δ : ‖Δ‖ ≤ ε}. In this paper, we consider E defined
by two matrix norms: the weighted Frobenius norm ‖·‖T

F
and the

weighted spectral norm ‖·‖T
2
. To be more specific, E could be:

EF �
{
Δ : ‖Δ‖T

F
≤ ε

}
=

{
Δ : Tr

(
ΔTΔ

H
)
≤ ε

2
}
(1)

E2 �
{
Δ : ‖Δ‖T

2
≤ ε

}
=

{
Δ : ΔTΔ

H � ε
2
I
}

(2)

where T is a known positive definite matrix.
Let Q = E

[
xxH

]
be the covariance matrix of the transmitted

signal vector. Regarding the power constraints at the transmitter, we
will start by considering a very general constraint Q ∈ Q, where
Q ⊆ S

N
+ is a nonempty compact convex set. In other words,Qmust

be positive semidefinite and within a nonempty compact convex set.
This constraint includes all commonly used power constraints as
special cases. Here we list some of them: (1) Sum power con-
straint Q1 � {Q : Q � 0, Tr (Q) ≤ Ps}; (2) Maximum power
constraint Q2 � {Q : Q � 0, λmax (Q) ≤ Pm}; (3) Per-antenna
power constraint Q3 � {Q : Q � 0, maxi[Q]ii ≤ Pa} or Q4 �

{Q : Q � 0, [Q]ii ≤ Pa,i, i = 1, . . . , N}.
Given that the system performance is determined by both the

transmit strategy and the channel, we adopt the following perfor-
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mance measure:

Ψ(Q, H) = Tr
(
HQH

H
)

. (3)

It can be verified that maximizing Ψ (Q,H) have several mean-
ings [12]: (1) maximizing the received SNR; (2) minimizing the
Chernoff Bound of the PEP when a STBC is used; (3) approximately
maximizing the mutual Information at low SNR; (4) approximately
minimizing the mean square error (MSE) at low SNR if a minimum
MSE (MMSE) equalizer is used at the receiver.

Based on the worst-case philosophy, our robust transmitter de-
sign can be formulated as the following maximin problem:

max
Q∈Q

min
Δ∈E

Tr
[(

Ĥ + Δ
)
Q

(
Ĥ + Δ

)H
]

. (4)

Note that the optimum value of (4) is zero if and only ifΔ = −Ĥ.
For E = EF or E = E2, this can only happen if ε ≥

∥∥Ĥ∥∥T

F
or ε ≥∥∥Ĥ∥∥T

2
, respectively, i.e., when the nominal channel is very small.

In such cases, there is no guarantee of performance. To avoid the
trivial solution, we assume that ε <

∥∥Ĥ
∥∥T

F
for E = EF and ε <∥∥Ĥ∥∥T

2
for E = E2.

3. CONVEX REFORMULATION OF THEMAXIMIN
PROBLEM

In this section, we consider the general power constraint Q ∈ Q
where Q ⊆ S

N
+ is a nonempty compact convex set. In this case, the

solution to the maximin problem (4) is the saddle point of the objec-
tive function, and the question is how to characterize and compute it.
We show that this can be achieved by reformulating (4) as a convex
problem, which can be globally solved by efficient polynomial-time
numerical algorithms. Moreover, when some specific power con-
straints are considered, the resulting convex problem simplifies to an
SDP [13].
Proposition 1 ( [12]) Let E = EF and Q ⊆ S

N
+ be a nonempty

compact convex set. Then, the maximin problem (4) is equivalent
to the following convex problem:

minimize
Q,μ,Z

Tr
[
(Z−Q) ĤHĤ

]
+ ε2μ

subject to Q ∈ Q
μ ≥ 0[

Z Q

Q Q + μT

]
� 0.

(5)

Proposition 2 ( [12]) Let E = E2 andQ ⊆ S
N
+ be a nonempty com-

pact convex set. Then, the maximin problem (4) is equivalent to the
following convex problem:

maximize
Q,μ,Z

Tr (Z)

subject to Q ∈ Q
μ ≥ 0[

ĤQĤ
H − Z− μI ĤQ

QĤ
H

Q + μ

ε2
T

]
� 0.

(6)

Remark 1. Propositions 1 and 2 are based on S-procedure [14]. It
is straightforward to see that (5) and (6) become SDPs ifQ = Q1 or
Q = Q4. When Q = Q2, we can easily transform (5) and (6) into

SDPs, since the constraint λmax (Q) ≤ Pm is equivalent to Q �
PmI. Similarly, when Q = Q3, the constraint maxi[Q]ii ≤ Pa,i

can be replaced by [Q]ii ≤ Pa,i, i = 1, . . . , N . In fact, for any
combination of Q1, Q2, Q3, and Q4 (i.e., any intersection among
them), the convex problems (5) and (6) become SDPs.

4. OPTIMAL TRANSMIT DIRECTIONS
Although the jointly optimal transmit directions and power alloca-
tion can be achieved by decomposing the optimal transmit covari-
ance matrix obtained through solving (5) or (6), one may wonder
whether they can be obtained independently. Even further, one may
ask whether there exist optimal channel-diagonalizing transmit di-
rections, just like the cases of perfect CSIT or some statistical CSIT,
that can reduce the complicated matrix-valued optimization to a sim-
ple power allocation problem. As an important result, we show that
the optimal transmit directions are just the right singular vectors of
the nominal channel matrix, provided some conditions are satisfied.
We start by giving the following result.
Proposition 3 Let E = EF and Q ⊆ S

N
+ be a nonempty compact

set. Then, the maximin problem (4) is equivalent to

maximize
Q∈Q,μ≥0

μ Tr
[
Q (Q + μT)−1

TĤ
H
Ĥ

]
− ε2μ (7)

where the objective is defined as 0 for μ = 0.

Proof: The basic idea is to replace the inner minimization of (4) by
its dual maximization, hence transforming the maximin problem to
a maximization problem. See details in [12].

Let the eigenvalue decomposition (EVD) ofQ beQ = UqΛqU
H
q

with the eigenvalues p1 ≥ · · · ≥ pN , the EVD of ĤHĤ be
ĤHĤ = UhΛhU

H
h with the eigenvalues γ1 ≥ · · · ≥ γN , and the

EVD of T be T = UtΛtU
H
t with the eigenvalues τ1 ≥ · · · ≥ τN .

Denote by λ (A) the vector consisting of the eigenvalues of a square
matrixA. We are now ready to state the main results.
Theorem 1 Let E = EF with T = τI and τ > 0, and Q ⊆ S

N
+ be

a nonempty compact set defined by constraining Q only through its
eigenvalues. Then, Uq = Uh is optimal for the maximin problem
(4).

Proof: From Proposition 3, when μ = 0, (4) has a zero objective
value and any Q ∈ Q is optimal, so in particular Uq = Uh is
optimal as well. When μ > 0, the maximin problem (4) with T =
τI is equivalent to

maximize
Q∈Q,μ>0

μτ Tr
[
Q (Q + μτI)−1

ĤHĤ
]
− ε2μ. (8)

Lemma 1 (9.H.1.g, 9.H.1.h [15]) LetA andB be twoN ×N pos-
itive semidefinite matrices, with eigenvalues α1 ≥ · · · ≥ αN and
β1 ≥ · · · ≥ βN , respectively. Then,

N∑
i=1

αiβN−i+1 ≤ Tr (AB) ≤
N∑

i=1

αiβi.

According to Lemma 1, it follows that

μτ Tr
[
Q (Q + μτI)−1

Ĥ
H
Ĥ
]

(9)

= μτ Tr
[
Λq (Λq + μτI)−1

U
H
q UhΛhU

H
h Uq

]
≤ μτ

N∑
i=1

pi

μτ + pi

γi =

N∑
i=1

μτγipi

μτ + pi
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where the equality holds when Uq = Uh. Since the power con-
straint does not depend onUq , we can always choose Uq = Uh to
maximize the objective without affecting the constraints.
Theorem 2 ( [12]) Let E = EF with T such thatUt = Uh, and

Q = {Q : Q � 0, fk (λ (Q)) ≤ Pk, k = 1, · · · , K}
where each fk (x) is a Schur-convex function. Then, Uq = Uh is
optimal for the maximin problem (4).
Remark 2. Theorem 1 indicates that Uq = Uh is optimal with a
general power constraint relying only on the eigenvalues ofQ, pro-
vided the uncertainty region is a sphere defined by the Frobenius
norm, which is the most frequently used deterministic model [8,11].
When more restrictions are added to the eigenvalues of Q, Theo-
rem 2 shows that Uq = Uh is optimal for an ellipsoid uncertainty
region if ĤHĤ and T can be simultaneously diagonalized. Given
that both Tr(Q) and λmax (Q) are Schur-convex functions of the
eigenvalues ofQ [3], Theorem 2 is applicable to the two most com-
mon constraints Q1 (the sum power constraint) and Q2 (the maxi-
mum power constraint) as well as their intersection. Therefore, in
most cases, the optimality of the eigenmode transmission (over the
nominal channel) still holds for the worst-case design, which com-
plies with the cases of perfect CSIT and statistical CSIT with mean
or covariance feedback. Note that the problems considered in [10]
(for the spherical uncertainty region) and [11] are a special case of
our framework with Q = Q1 and T = I. However, they assumed
Uq = Uh without knowing whether this is optimal or not, even
if [11] offered some sufficient conditions. Consequently, by using
Theorem 1 or 2, the complicated matrix-valued maximin problem
(4) can be simplified to a scalar power allocation problem.

5. OPTIMAL POWER ALLOCATION
Let r = rank(Ĥ). When E = EF with T such that Ut = Uh

and Q is a nonempty compact convex set satisfying the condition in
Theorem 2, from (7), the maximin problem (4) can be simplified to

maximize
{pi}:Q∈Q,μ≥0

∑r

i=1

μτiγipi

μτi+pi

− ε2μ. (10)

It can be verified that (10) is a convex problem, thus admitting glob-
ally optimal solutions that can be efficiently found. Similarly, when
E = EF withT = τI and τ > 0 andQ is a nonempty compact con-
vex set satisfying the condition in Theorem 1, the resulting power
allocation problem is a convex problem as well.

5.1. Sum Power Constraint Q = Q1 and E = EF with T such
thatUt = Uh

In this case, the maximin problem (4) can be simplified to

maximize
{pi},μ

∑r

i=1

μτiγipi

μτi+pi

− ε2μ

subject to
∑N

i=1
pi = Ps

p1 ≥ · · · ≥ pN ≥ 0

μ ≥ 0

(11)

where we explicitly write the decreasing order of {pi}. The solution
to this problem is given by the following theorem:
Theorem 3 ( [12]) The solution to the problem (11) is

p
�
i =

{
τi

[√
γi

bk

(Ps + ckμ�)− μ�

]
, for i = 1, · · · , k

0, for i > k

(12)

with

μ
� =

Ps

ck

(√
bk

bk − akck

− 1

)
(13)

where am �
∑m

j=1
τjγj − ε2, bm �

(∑m

j=1
τj
√

γj

)2

, cm �∑m

j=1
τj and βm �

∑m

j=1
τj

(√
γj −√γm

)2
for m = 1, · · · , r,

and βr+1 � +∞, and k is such an integer that βk < ε2 ≤ βk+1.
The optimum value of (11) is

Ps

c2
k

(√
bk −

√
bk − akck

)2

. (14)

Corollary 1 ForQ = Q1 and E = EF withT such thatUt = Uh,
the robust transmitter uses only one eigenmode if

ε ≤ √τ1 (
√

γ1 −√γ2) . (15)

Corollary 2 As ε →
∥∥Ĥ∥∥T

F
, the solution to the problem (11) be-

comes

p
�
i =

τi
√

γi∑r

j=1
τj
√

γj

Ps, i = 1, · · · , r. (16)

Remark 3. According to Theorem 3, the robust transmitter will
use multiple eigenmodes to increase the reliability in the worst-case
channel. The larger the error radius ε is, i.e., the more uncertainty,
the more eigenmodes will be used. Corollary 1 indicates that beam-
forming along one direction is robust if ε is very small, or if the
difference between the largest two singular values of the nominal
channel is very large, which implies a nearly rank-one channel. In-
terestingly, the similar result on the number of used eigenmodes was
also obtained in [10, 11]. However, In contrast to the semi-closed-
form solutions in [10, 11], we offer the fully analytical solution in a
more general case. Furthermore, from Corollary 2, as ε approaches∥∥Ĥ∥∥T

F
, the worst-case design tends to allocate the transmit power

according to the weighted proportion of a singular value of the nom-
inal channel, instead of a uniform distribution. This has been ob-
served in [10, 11] through numerical simulations, but no proper ex-
planation was given. The fundamental reason is that the determinis-
tic model adopted in this paper is not an isotropically unconstrained
set [9], but an ellipsoid with the center, i.e., the nominal channel,
away from the origin.

5.2. Maximum Power Constraint Q = Q2 and E = EF with T

such thatUt = Uh

The corresponding power allocation problem is

maximize
{pi},μ

∑r

i=1

μτiγipi

μτi+pi
− ε2μ

subject to Pm ≥ p1 ≥ · · · ≥ pN ≥ 0

μ ≥ 0.

(17)

Due to the monotonicity, it is easy to see that the optimal power
allocation is p�

i = Pm, i = 1, · · · , r and p�
i = 0, i > r. That

is, a uniform distribution with the maximum power on each nonzero
eigenmode.

To obtain the optimal objective value, we need to solve

maximize
μ≥0

∑r

i=1

μτiγiPm

μτi+Pm
− ε2μ (18)

which is a convex problem since the objective function is strictly
concave in μ. The optimal μ can be found by setting the derivative of
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the objective function to be zero, which turns to finding the positive
root of the following equation:

w (μ) =

r∑
i=1

τiγiP
2
m

(μτi + Pm)2
= ε

2
. (19)

Unfortunately, this equation does not admit an analytical root. But
we can resort to the bisection method by exploiting the monotonicity
of w (μ).

In the case ofT = τI, a closed-form solution to (18) is available

μ
� =

Pm

τ

(√
τ
∑r

i=1
γi

ε
− 1

)
(20)

which leads to the optimum value Pm

(√∑r

i=1
γi − ε√

τ

)2

.

6. NUMERICAL RESULTS

The philosophy of robustness in this paper is to guarantee a perfor-
mance level for any channel realization in the uncertainty region. In
other words, we are interested in the worst-case behavior. Therefore,
we compare the worst-case performance of the different transmit
strategies, including the robust approach, the beamforming strategy
which transmits only over the maximum eigenvalue of the nominal
channel, and the equal-power transmission which allocates the trans-
mit power equally over all eigenmodes. For simplicity, we consider
Q = Q1 and E = EF with T = I. To take into account differ-
ent channels, the elements of the nominal channel Ĥ are randomly
generated according to zero-mean, unit-variance, i.i.d. Gaussian dis-
tributions.

One thing worth pointing out is that even if we assume ε <∥∥Ĥ∥∥
F
, there is still a probability that beamforming could not guar-

antee any performance in the uncertainty region because of
∥∥Ĥ∥∥

2
≤∥∥Ĥ∥∥

F
. Therefore, to make sure that all three transmit strategies can

work in their worst-case situations, we set ε = s
∥∥Ĥ∥∥

2
with the

parameter s ∈ [0, 1). Nevertheless, it is possible that ε is a small
proportion to

∥∥Ĥ
∥∥

F
even if s tends to 1.

In Fig. 1, we plot the symbol error rates (SERs) of the three
transmit strategies in their worst-case channels versus SNR for dif-
ferent values of s. With four antennas equipped at both ends of the
link, i.e.,M = N = 4, the QPSKmodulated symbols are encoded at
the transmitter according to a 3/4-rate complex OSTBC introduced
in [1], and decoded by a ML detector at the receiver. The worst-case
SER is averaged over Ĥ. As observed from Fig. 1, the robust ap-
proach offers the lowest worst-case SER among all transmit strate-
gies, which complies with our design objective. When s is small,
i.e., the channel error is small, the performance of beamforming is
close to that of the robust approach. This is consistent with Corol-
lary 1 which says that when ε is small the robust strategy coincides
with beamforming. On the other hand, as s increases (so does ε),
the performance gap between beamforming and the robust approach
becomes larger, and eventually beamforming is outperformed by the
equal-power transmission.
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