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ABSTRACT

We consider a broadcast channel with multiple antennas at the base
station and single-antenna receivers, and we study transceiver de-
sign with Quality of Service (QoS) requirements in the presence of
uncertain channel state information (CSI) at the transmitter. Each
user’s QoS requirement is formulated as an upper bound on the out-
age probability of the mean square error (MSE), and we demonstrate
that these constraints imply bounds on the outage of the received
signal-to-interference-plus-noise-ratio. Using this MSE framework,
we provide a unified approach to the design of non-linear and lin-
ear transceivers that minimize the transmitted power required to sat-
isfy the QoS constraints. We present three conservative design ap-
proaches that yield (deterministic) convex and efficiently-solvable
design formulations that guarantee the satisfaction of the QoS con-
straints, and we propose computationally-efficient algorithms that
can reduce the level of conservatism in the initial formulations.

Index Terms— MIMO Systems, Broadcast Channel, Quality of
Service (QoS), Outage-based Design.

1. INTRODUCTION

We consider the design of (non-linear) Tomlinson-Harashima (TH)
transceivers and linear transceivers for the downlink of a narrow-
band cellular system with multiple transmit antennas at the base sta-
tion and single antenna receivers. Motivated by the increasing de-
mand for low latency interactive services, we seek to minimize the
total transmitted power required to satisfy (physical layer) quality
of service (QoS) constraints specified by the users. For the case
in which the transmitter has perfect channel state information (CSI),
this problem has received significant interest, e.g., [1, 2], but in prac-
tical downlink systems, the transmitter’s CSI is subject to a variety
of sources of imperfection.

One approach to obtaining robustness to channel uncertainty is
to consider a bounded model for the error in the CSI and to constrain
the design so that QoS requirements are satisfied for all channels
admitted by this model, e.g., [1, 3]. In this paper, we consider an
alternative approach that assumes a stochastic model for the channel
uncertainty, and we design the transceivers so as to minimize the to-
tal transmitted power subject to satisfaction of probabilistic QoS re-
quirements. We formulate each of these requirements as a constraint
on the maximum allowed outage probability of the mean square er-
ror (MSE) in each user’s received signal (with respect to a specified
target MSE), and we demonstrate that these outage constraints imply
corresponding constraints on the outage of the decision-point signal-
to-interference-plus-noise-ratio (SINR). Using this MSE framework,
we provide a unified approach to the design of non-linear and linear
transceivers with probabilistic QoS constraints.

We consider four stochastic models for the channel uncertainty
which cover a wide range of systems with uncertain CSI. We formu-
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Fig. 1. Downlink with THP transceiver.

late the design problem as a chance constrained optimization prob-
lem, in which each chance constraint involves a randomly perturbed
second order cone (SOC) constraints. Chance constraints that in-
volve this type of cone are generally intractable [4], and (conserva-
tive) approaches that guarantee that the chance constraints are sat-
isfied are usually considered. We present three conservative design
approaches that yield (deterministic) convex and efficiently-solvable
design formulations that guarantee the satisfaction of the probabilis-
tic QoS constraints, and we propose computationally-efficient algo-
rithms that can reduce the level of conservatism in the initial for-
mulations. A related approach to the design of a linear downlink
transceiver was considered in [5], but in that work the uncertainty in
the CSI is modelled indirectly, via the channel covariance matrix. In
our approach, the uncertainty is modelled directly.

2. SYSTEMMODEL

We consider a narrowband downlink with Nt antennas at the trans-
mitter and K users, each with one antenna. Tomlinson-Harashima
precoding (THP) is used at the transmitter for spatial multi-user in-
terference pre-subtraction (e.g., [6]), and each user employs a scalar
equalizer gk; see Fig. 1. Hence the design parameters are the THP
feedforward and feedback matrices, P andB, and {gk}K

k=1.
The vector s ∈ C

K in Fig. 1 contains the data symbol destined
for each user, and we assume that sk is chosen from a square QAM
constellation with cardinalityM and thatE{ssH} = I. The Voronoi
region V of the constellation is a square of side lengthD. The trans-
mitter’s modulo operation with respect to V can be modelled as the
addition of the complex quantity ik = ire

k D + j iimag
k D to vk,

where ire
k , iimag

k ∈ Z, and j =
√−1. Using this observation, we

obtain the standard linearized model, e.g., [6], of the transmitter, see
Fig. 2, for which

v = (I + B)−1u, (1)
where the modified data symbols u = i + s. The elements of v are
uncorrelated and uniformly distributed over the Voronoi region V ,
[6, Th. 3.1], and hence will have slightly higher average energy than
the input symbols s. For moderate to large values of M this power
increase can be neglected and E{vvH} = I is often used; e.g., [6].
Hence, the average transmitted power constraint can be written as
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Fig. 2. Equivalent linear model for the transmitter.

Ev{xHx} = tr(PHP).
The signals received at each user, yk, can be written as

yk = hkx + nk = hkP(I + B)−1u + nk, (2)

where hk ∈ C
1×Nt contains the channel gains from the transmit-

ting antennas to the kth receiver, and nk represents zero-mean ad-
ditive white noise with variance is σ2

nk
. The equalizing gain gk

is used to obtain an estimate of the modified data symbol ûk =
gkhkP(I + B)−1u + gknk of uk, and then ŝk is obtained via
a modulus operation. We can define the error signal ûk − uk =
(gkhkP−mk − bk)v + gknk, wheremk and bk are the kth rows
of the matrices I and B, respectively. When the integer ik is cor-
rectly removed by the receiver’s modulo operation, this error signal
is equivalent to ŝk − sk, and the Mean Square Error (MSE) of the
kth user can be written as

MSEk =
∥∥[

gkhkP − mk − bk, gkσk

]∥∥2
. (3)

Linear transceivers are a special subclass of the model herein, with
B = 0 and ik = 0, and hence uk = sk.

3. TRANSCEIVER DESIGNWITH QOS: PERFECT CSI

As discussed in the Introduction, the QoS requirement of user k will
take the form of an upper bound on MSEk. This has the advantage
that it enables unified treatment of linear and non-linear transceivers.
Furthermore, guaranteeing an upper bound on the MSE implies a
guaranteed lower bound on the decision point SINR [7]:

Lemma 1. For any given set of channels {hk}K
k=1, if there exists a

transceiver design P,B, gk that guarantees that MSEk ≤ ζk, then
that design also guarantees that SINRk ≥ (1/ζk) − 1.

Using the definitions

hk =
[
Re{hk} Im{hk}

]
, (4)

P =

[
Re{P} Im{P}
− Im{P} Re{P}

]
, (5)

bk =
[
Re{bk}/gk Im{bk}/gk

]
, (6)

and fk = 1/gk, mk =
[
Re{mk}, Im{mk}

]
, the design of the

transceiver components (assuming perfect CSI) so as to minimize
the total transmitted power subject to satisfying the users’ MSE re-
quirements, ζk, can be formulated as an (efficiently-solvable) convex
Second Order Cone Program (SOCP) [7]:

min
P,B,fk,t

t (7a)

s. t.
∥∥vec(P)∥∥ ≤ t, (7b)
bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (7c)∥∥[hkP − fkmk − bk, σnk ]

∥∥ ≤
√

ζkfk. (7d)

The formulation in (7) can easily accommodate a variety of ad-
ditional power constraints, such as shaping constraints and per-
antenna constraints. More importantly, it enables us to derive

probabilistically-constrained counterparts of the perfect CSI prob-
lem for the uncertainty models presented below.

4. CHANNEL UNCERTAINTY MODEL

We consider an additive model of the CSI uncertainty

hk = ĥk + ek, (8)

where ĥk is the transmitter’s knowledge of hk, the kth user’s actual
channel, and ek is the corresponding mismatch. We will consider
four statistical models for ek:
Model-G The elements of ek, ek,�, are independent and Gaussian

with zero-mean and variance σ2
ek,�
. This model is appro-

priate for systems with uplink-downlink reciprocity, which
allows transmitter to estimate the users’ channels on the up-
link; specifically those in which the coefficients of each user’s
channel are uncorrelated.

Model-U The elements ek,� are independent and uniformly dis-
tributed random variables on the interval [−uk,�, uk,�]. This
model is suitable for systems in which the users employ a
scalar quantizer to quantize their channel state information
and feed it back to the transmitter.

Model-VG The elements ek,� are jointly Gaussian with zero-mean
and covariance matrix Σek . This model is suitable when the
transmitter estimates the users’ channels on the uplink, and
the coefficients of each user’s channel are correlated.

Model-VU The vector ek is uniformly distributed over the volume
of a given ellipsoid. This model is suitable for systems in
which the users employ vector quantization.

5. TRANSCEIVER DESIGNWITH PROBABILISTIC QOS

Given the stochastic channel uncertainty models in Section 4, our
goal is to design a robust transceiver that minimizes the transmitted
power necessary to ensure that the QoS constraint of the kth user is
satisfied with a probability of outage that is less than εk. The QoS
constraint is formulated in terms of MSEk, and this is motivated by
the following lemma, which is a direct consequence of Lemma 1.

Lemma 2. Let f(h1, . . . ,hK) be a probability distribution of the
users’ channels. If there exists a transceiver design P,B, gk that
guarantees that Pr{MSEk ≤ ζk} ≥ 1 − εk, then that design guar-
antees that Pr{SINRk ≥ (1/ζk) − 1} ≥ 1 − εk.

Using (7), the design problem can be stated as:

min
P, B,
fk, t

t (9a)

s. t.
∥∥vec(P)∥∥ ≤ t, (9b)
bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (9c)

Pr
{∥∥[hkP − fkmk − bk, σnk ]

∥∥ ≤
√

ζkfk}
≥ 1 − εk. (9d)

This is a chance constrained optimization problem (e.g., [8]), in
which (9d) represents the probability that a randomly perturbed sec-
ond order cone constraint holds. In general, chance constrained op-
timization problems are quite challenging. The key step in the de-
velopment of a computationally-tractable algorithm is to obtain an
efficiently-computable representation of the chance constraints. In
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some simple problems, such a representation can be obtained in a
straightforward manner (e.g., [9]), but when the chance constraints
involve conic constraints, as is the case in (9d), they are generally
intractable [4]. To circumvent this intractability, we will construct
three deterministic and efficiently-solvable convex design formula-
tions that guarantee the satisfaction of the chance constraints.

6. DESIGN FORMULATION I

First, we consider Models G and U. We define

Ak,0 =

[ √
ζkfk ak,0

ak,0
T (

√
ζkfk)I

]
, (10)

Ak,� = ak,�

[
0 [mkP, 0]

[mkP, 0]T 0

]
, (11)

where ak,0 = [ĥkP−fkmk−bk, σnk ], and for Model-G ak,� =
σek,� and for Model-U ak,� = uk,�. We also define

λk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
0<z<0.5

min
{
2
√

2/z, 10
√− ln z

}
min

{
1, 1−φ(z)√

−2 ln 2εk

} Model-G;

min
0<z<0.5

min
{
2
√

2/z, 4 + 4
√

ln(2/z)
}

+4
√− ln 2εk − ln(1 − z) Model-U.

(12)
where φ(·) is the inverse of the CDF of the standard Gaussian ran-
dom variable N(0, 1). Using these definitions, we have:

Theorem 1. Consider the robust transceiver design problem with
probabilistic QoS guarantees in (9) for Model-G and Model-U, and
the definitions in (10), (11), and (12). For εk ∈ (0, 0.5), the optimal
solution of the following semidefinite program (SDP)

min
P, B,
fk, t

t (13a)

s. t.
∥∥vec(P)∥∥ ≤ t, (13b)
bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (13c)⎡
⎢⎢⎢⎢⎣

1
λk

Ak,0 Ak,1 . . . Ak,2Nt

Ak,1
1

λk
Ak,0

...
. . .

Ak,2Nt
1

λk
Ak,0

⎤
⎥⎥⎥⎥⎦ ≥ 0 (13d)

is a conservative solution of (9) that guarantees that the probability
of outage of the QoS constraint of each user is at most εk. �
Proof. The proof is based on the Schur-Complement Theorem, a
sequence of algebraic transformations, and an application of Theo-
rem 5.2 in [4], but is omitted for reasons of space.

The SDP in (13) can be efficiently solved, and typical imple-
mentations can exploit the block-arrow structure of the matrices in
(13d) and the arrow structure of the constituent blocks. It can be
verified from (12) that as εk decreases, λk increases, and the size of
the feasible set of (13d) decreases. Hence, as one might expect, the
transmitted power increases with decreasing outage probabilities.

6.1. Alternative design of λ

An advantage of choosing λk according to (12) is is that if the SDP
in (13) is feasible, its optimal solution is guaranteed to satisfy the

corresponding QoS target at or below the specified outage probabil-
ity, εk. Furthermore, λk can be computed offline. However, this
choice may be conservative. In this section, we will describe an it-
erative algorithm that seeks values of λk that are smaller than those
in (12), and hence require less transmission power and expand the
range of achievable QoS requirements.

For simplicity, we will consider the case in which the users have
the same outage probability, and hence all λk are the same. Given the
monotonicity of λ with respect to ε, we will use a bisection search.
In each iteration, we solve (13) for the given λ and then use a statisti-
cal validation procedure to determine whether that solution satisfies
(9d). The outcome of the validation procedure determines the inter-
val of λ that is to be bisected in the next iteration. The statistical
validation procedure can be constructed (e.g., [4]) very efficiently
compared to conventional Monte-Carlo techniques, and with arbi-
trary high reliability.

7. DESIGN FORMULATION II

In this section, we will present an alternative design formulation that
provides probabilistic QoS guarantees for Model-G.

Theorem 2. If λk is chosen such that εk =
√

e λk exp(−λ2
k/2),

then the optimal solution of the following SOCP

min
P,B,fk,
αk,t,θ

t (14a)

s. t.
∥∥vec(P)∥∥ ≤ t, (14b)
bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (14c)∥∥[ĥkP − fkmk − bk, σnk ]

∥∥ ≤
√

ζkfk − λkθk, (14d)∥∥[σek,�mlP]
∥∥≤ αk,�, 1 ≤ k ≤ K, 1 ≤ 	 ≤ 2Nt (14e)∥∥αk

∥∥ ≤ θk, 1 ≤ k ≤ K (14f)

is a conservative solution of (9) for Model-G. �
Proof. The proof involves a sequence of algebraic transformations
and application of Theorem 1 in [10].

As in Section 6, λk can be pre-computed, and when all εk = ε
an iterative algorithm analogous to that in Section 6.1 can be used to
obtain less conservative values of λ.

8. DESIGN FORMULATION III

The designs in Sections 6 and 7 are applicable to uncertainty models
with i.i.d. components. The existence of counterparts for dependent
uncertainties is still an open problem [4]. In this section, we will
adopt a different approach in which we characterize a bounded re-
gionRk that contains 1−εk of the probability of each user’s channel
hk, and design a robust transceiver that guarantees the satisfaction of
the requested QoS for each channel realization in this region. Such a
design satisfies the QoS constraints with a probability that is at least
1 − εk; see also [11].

For Model-VG, the channel uncertainty ek is Gaussian dis-
tributed with zero-mean and covariance Σek , and hence the region
RVG

k (εk) that contains 1 − εk of the probability of ek is

RVG
k (εk) = {ek|ek = Φku, uT u ≤ λ2

k = CDF−1
χ2Nt

(1 − εk)},
(15)

where CDF−1
χ2Nt

(·) is the inverse CDF of a Chi-square random
variable with 2Nt degrees of freedom, and Φk = Σ

1/2
ek . For
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Model-VU, the CSI error is uniformly distributed over the ellipsoid
Ek = {ek|ek = Φku, uT u ≤ 1}. Hence, the regionRUG

k (εk) that
contains 1 − εk of the probability of ek is another ellipsoid that is
aligned with Ek, but with 1 − εk of its volume, namely

RUG
k (εk) = {ek|ek = Φku, uT u ≤ λ2

k = Nt
√

1 − εk}. (16)

Our next step, is to guarantee that each user’s MSE constraint is
satisfied for all ek ∈ Rk(εk). This constraint represents an infinite
number of second order cone constraints, one for each ek ∈ R(εk).
Using the approach in [7] one can obtain the following exact Linear
Matrix Inequality representation of the constraint

⎡
⎣

√
ζkfk − μk 0 ak,0

0 μkI λk[ΦkP, 0]

ak,0
T λk[ΦkP, 0]T

√
ζkfkI

⎤
⎦ ≥ 0, (17)

where ak,0 is as defined in Section 6. Hence, Theorem 3.

Theorem 3. If λk is chosen according to (15) [(16)], then the opti-
mal solution of the following SDP

min
P, B,
fk, t

t (18a)

s. t.
∥∥vec(P)∥∥ ≤ t, (18b)
bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (18c)

and (17) (18d)

is a conservative solution of (9) for Model-VG [Model-UG]. �
Once again, λk can be pre-computed, and when εk = ε, an iterative
algorithm can be used to obtain less conservative values of λ.

9. SIMULATION STUDIES

We now demonstrate the performance of the designs formulations
in Theorems 1, 2, and 3, and their counterparts that implement the
algorithm in Section 6.1. We consider a broadcast channel with
Nt = 3 transmit antennas, K = 3 users, and a Rayleigh fading
channel model. The uncertainty is modelled using Model-G with
σ2

ek,�
= 0.003. We consider a scenario in which each user is to be

provided with an SINR of γk = γ, with an outage probability of at
most 10%. The QoS constraints in terms of SINR are translated to
corresponding constraints on the MSE using Lemma 2.

For TH precoding, ordering of the users’ channels is necessary.
Optimal ordering requires an exhaustive search, and instead we im-
plemented a generalization of the suboptimal ordering method in
[12]. In our generalization, the ordering criterion is minimizing the
sum of each user’s SINR requirements divided by its received SINR
when P = I; a quantity that is proportional to the power necessary
for each user to achieve its SINR requirement.

We randomly generated 1000 realizations of the set of channel
estimates {ĥk}K

k=1 and examined the performance of each design
as the SINR requirement, γ, increases. For each set of channel es-
timates and for each value of γ we determine whether each design
yields a transceiver (of finite power) that guarantees that the proba-
bilistic QoS constraints are satisfied. In Fig. 3 we plot the percent-
age of channel realizations for which each design generated such a
transceiver. It can be seen from the figure, that the first design with
bisection search over λ provides the probabilistic QoS guarantee to
the largest percentage of the channel estimates (and for largest range
of SINR requirements γ). The second and third designs with bisec-
tion search provide the next best performances, respectively. We also
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Fig. 3. Percentage of channel realizations for which the probabilistic
QoS guarantee can be made, against the users’ equal QoS require-
ments γ. The outage probability is εk = 0.1.

observe the impact of the bisection search in improving the feasibil-
ity of each design. This is especially true for the first and second
designs. While the first design has the advantage that it is applicable
to uniformly distributed uncertainties, as well as Gaussian uncer-
tainties, the second design is an SOCP problem and can be solved at
lower computational cost the SDP in the first design.

10. REFERENCES

[1] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit
beamforming,” in Handbook of Antenna in Wireless Communications,
L. C. Godara, Ed., CRC Press, Aug. 2001.

[2] A. Wiesel, Y.C. Eldar, and S. Shamai, “Linear precoding via conic op-
timization for fixed MIMO receivers,” IEEE Trans. Signal Processing,
vol. 54, pp. 161–176, Jan. 2006.

[3] M. Botros Shenouda and T. N. Davidson, “Convex conic formula-
tions of robust downlink precoder designs with quality of service con-
straints,” IEEE J. Select. Topics Signal Processing, vol. 1, pp. 714–724,
Dec. 2007.

[4] A. Ben-Tal and A. Nemirovski, “On safe tractable approximations of
chance constrained linear matrix inequalities,” submitted toMath Oper.
Res.. See also http://www2.isye.gatech.edu/∼nemirovs/ChCLMIs.pdf.

[5] B. Chalise, S. Shahbazpanahi, A. Czylwik, and A. B. Gershman, “Ro-
bust downlink beamforming based on outage probability specifica-
tions,” IEEE Trans. Wireless Commun., vol. 6, pp. 3498–3503, 2007.

[6] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmis-
sion, Wiley, New York, 2002.

[7] M. Botros Shenouda and T. N. Davidson, “Design of fair multi-user
transceivers with QoS and imperfect CSI,” in Proc. 6th Conf. Commun.
Networks Services Research, Halifax, May 2008.

[8] A. Prekopa, Stochastic Programming, Kluwer, Boston, 1995.
[9] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Robust linear receivers

for multi-access space-time block coded MIMO systems: A probabilis-
tically constrained approach,” IEEE J. Select. Areas Commun., vol. 24,
pp. 1560–1570, Aug. 2006.

[10] D. Bertsimas and M. Sim, “Tractable approximations to robust conic
optimization problems,” Math. Program., vol. 107, pp. 5–36, 2006.

[11] A. Pascual-Iserte, D. P. Palomar, A. I. Perez-Neira, and M. A. Lagunas,
“A robust maximin approach for MIMO communications with imper-
fect channel state information based on convex optimization,” IEEE
Trans. Signal Processing, vol. 54, pp. 34–360, Jan. 2006.

[12] C. Windpassinger, T. Vencel, and R. F. H. Fischer, “Precoding and
loading for BLAST-like systems,” in Proc. IEEE Int. Conf. Commun.,
Anchorage, May 2003.

2392


