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ABSTRACT

Consider a scenario in which K users and a jammer have a limited
power budget and share a common spectrum ofN orthogonal tones.
The goal of each user is to allocate its power across the N tones in
such a way that maximizes the total sum rate that he/she can achieve,
while treating the interference of other users and the jammer’s signal
as additive Gaussian noise. The jammer, on the other hand, wishes
to allocate its power in such a way that minimizes the utility of the
whole system; that being the total sum of the rates communicated
over the network. For this non-cooperative game, we propose a
generalized version of the existing iterative water-filling algorithm
whereby the users and the jammer update their power allocations in
a greedy manner. We study conditions under which the generalized
iterative water-filling algorithm converges to a Nash equilibrium of
the game. The conditions that we derive in this paper depend only
on the system parameters, and hence can be checked a priori.

Index Terms— Open-spectrum communications, jamming,
non-cooperative games, Nash equilibrium, contraction mapping

1. INTRODUCTION

In open-spectrum communication systems the spectrum is typically
partitioned intoN narrowband orthogonal tones and all users are al-
lowed to use all the tones simultaneously. In comparison with fixed
tone-assignment policies, this setup offers significantly greater free-
dom in utilizing the spectrum. However, this freedom comes at the
expense of a number of challenges that ought to be taken into con-
sideration by the system designer. In particular, the inherent spectral
overlap in these systems gives rise to the so-called multi-user in-
terference, which is a limiting factor for multi-user communication
systems. To mitigate the effect of multi-user interference, the users
may employ a distributed power allocation mechanism whereby each
user measures the interference level on each tone [1] and allocates
its power dynamically across tones in such a way that maximizes its
total achievable rate.

Open-spectrum communication systems typically operate over
unlicensed spectral bands [2] whereby multiple users can access
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the shared spectrum simultaneously and freely. This feature ren-
ders these systems susceptible to antagonistic behaviour of potential
jammers, who may be interested in reducing the utility of the entire
system.1 For example, a jammer may be able to ‘listen’ to the users’
transmissions, and subsequently updates its power allocation across
tones in order to reduce the total sum rate communicated over the
network. As such, the procedure of both the users and the jammer
can be represented as a non-cooperative game [3] in which play-
ers are interested in maximizing their individual utilities in a selfish
fashion. Since the impact of the jammer’s signal can be deleteri-
ous to the overall system performance, our goal in this paper is to
study Nash equilibrium of this sum rate game and subsequently the
jammer’s effect on the achievable system utility. We also wish to an-
alyze the convergence behavior of a generalized version of the iter-
ative water-filling algorithm (IWFA) for this non-cooperative game
whereby users and the jammer sequentially update their power allo-
cations in a greedy manner to maximize their respective utilities.

In this paper we consider a communication system in which K
users and a jammer shareN orthogonal tones. Both the users and the
jammer have limited power budgets. The goal of each user is to allo-
cate its power across the N tones in such a way that maximizes the
total sum rate that he/she can reliably communicate. The jammer,
on the other hand, wishes to allocate its power in such a way that
minimizes the utility of the whole system; that being the total sum
of the rates communicated over the network. This scenario is analo-
gous to a zero-sum non-cooperative game. In this paper we show
that at least one Nash equilibrium exists for this non-cooperative
game. Moreover, we consider a generalized version of the itera-
tive water-filling algorithm (GIWFA) whereby users and the jammer
update their power allocations in a greedy manner to maximize their
respective utilities. For the case in which the users and the jammer
update their power loads sequentially according to some prescribed
order we derive sufficient conditions under which GIWFA converges
to a unique Nash equilibrium of this non-cooperative game. In [4]
these conditions are extended to the case in which the users and the
jammer update these loads in a totally asynchronous fashion at ar-
bitrary time instants and using possibly outdated information about
the interference from other users. We present numerical results that
illustrate the impact of the jammer on the system utility and on the
convergence of the users’ iterates. In particular we show that the
presence of a strong jammer can not only reduce the total utility of
the system, but also cause the, otherwise convergent, IWFA algo-

1In this paper, the sum rate of each user across tones will be referred to as
the utility of the user, and the sum of utilities of all users will be referred to
as the system utility.
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rithm to oscillate.

2. SYSTEMMODEL AND DEFINITIONS

Consider a communication system in which N tones are shared by
K user pairs and one jammer. (We refer to a transmitter-receiver pair
as one user.) Let each user have one transmit and one receive antenna
and let hn

jk denote the gain between the transmitter of User j and the
receiver of User k at the n-th tones, for j, k ∈ K and n ∈ N , where
K

�
= {1, . . . , K} andN �

= {1, . . . , N}. Furthermore, let sn
k and sn

0

be the power allocated by User k and the jammer to the n-th tone,
respectively. (Throughout this paper the jammer will be denoted as
User 0.) If both the users and the jammer transmit Gaussian signals,
then the rate that can be achieved by User k ∈ K on the n-th tone is
given by [5]

Rn
k (sn

1 , . . . , sn
K) = log

(
1 +

|hn
kk|2sn

k

Nn
k

+
∑

j �=k |hn
jk

|2sn
j
+|hn

0k
|2sn

0

)
, (1)

where Nn
k denotes the noise variance observed by User k on the

n-th tone. By dividing both the numerator and the denominator by
|hn

kk|
2, the expression in (1) can be expressed as

Rn
k (sn

1 , . . . , sn
K) = log

(
1 +

sn
k

σn
k

+
∑

j �=k αn
jk

sn
j
+αn

0k
sn
0

)
, (2)

where we define αn
0k = |hn

0k|
2/|hn

kk|
2 ≥ 0, αn

jk = |hn
jk|

2/|hn
kk|

2 ≥

0, and σn
k = Nn

k /|hn
kk|

2 > 0, for j, k ∈ K, n ∈ N . Suppose that
User k ∈ K (k �= 0), is interested in maximizing its own sum-rate,
so its utility is given by

Uk(s0, s1, · · · , sK) =
N∑

n=1

Rn
k (sn

1 , . . . , sn
K)

=

N∑
n=1

log
(
1 +

sn
k

σn
k

+
∑

j �=k αn
jk

sn
j
+αn

0k
sn
0

)
, (3)

while the utility of the jammer is

U0(s0, s1, · · · , sK) = −
K∑

k=1

Uk

= −
K∑

k=1

N∑
n=1

log
(
1 +

sn
k

σn
k

+
∑

j �=k αn
jk

sn
j
+αn

0k
sn
0

)
, (4)

where we use sk to denote the vector [s1
k, · · · , sN

k ]T .
Given a limited power budget, and a maximum power constraint

on each tone, the goal of User k, is to maximize Uk; that is, User k
wishes to solve the following optimization problem,

max Uk(s0, s1, · · · , sK),

subject to
N∑

n=1

sn
k ≤ Pk, (5a)

0 ≤ sn
k ≤ Sn

max,k, (5b)

where, Pk denotes the total power budget of User k, Sn
max,k denotes

the maximum signal power that User k can use on the n-th tone,
and in order for (5a) not to be redundant, we assume that Pk ≤∑N

n=1 Sn
max,k. We will denote the feasible set of User k as Pk; i.e.,

Pk
�
=

{
sk = [s1

k, · · · , sN
k ]T

∣∣ N∑
n=1

sn
k ≤ Pk, sn

k ∈ [0, Sn
max,k]

}
.

(6)

Since individual users do not collaborate among themselves nor
do they collaborate with the jammer, and both users and the jammer
selfishly maximizes their own utilities, this communication scenario
can be modelled as a non-cooperative game [3]. In this game in-
dividual users and the jammer are non-cooperative players, and the
power allocations of any User k, including the jammer, that lie in
Pk (cf., (6)) represent the set of admissible strategies of this user.
A Nash equilibrium of this game [3] is a (K + 1)-tuple of power
strategies {s∗k}K

k=0, such that for any k ∈ {0} ∪ K

Uk(s∗0, s
∗
1, · · · , s∗k−1, s

∗
k, s∗k+1, · · · , s∗K) ≥

Uk(s∗0, s
∗
1, · · · , s∗k−1, sk, s∗k+1, · · · , s∗K), ∀sk ∈ Pk. (7)

In other words, a Nash equilibrium of the game is a locally optimal
strategy for each player that no player has an incentive to unilater-
ally change [3]. In the next section, we will propose a decentralized
algorithm for updating the jammer and the users’ power allocations.
By analyzing the convergence of this algorithm, we derive sufficient
conditions under which the Nash equilibrium is unique.

3. EXISTENCE AND UNIQUENESS OF A NASH
EQUILIBRIUM

Since, for every k ∈ K, Uk(s0, s1, · · · , sk−1, •, sk+1, sK)
is a continuously differentiable concave function, and so is
U0(•, s1, · · · , sK), and since each Pk is a compact convex set, it
follows readily from [6, Proposition 2.2.9] that a Nash equilibrium
exists. Such an equilibrium can be found using a standard fixed-point
algorithm, an instance of which is given in the next section.

3.1. A generalized iterative water-filling algorithm (GIWFA)

A simple distributed algorithm for the users and the jammer to up-
date their power allocation is the following generalized iterative
water-filling algorithm (GIWFA). Let sn,ν

k be the power allocation
of User k on the n-th tone at iteration ν, and s

ν
k be the vector

[s1,ν
k , · · · , sN,ν

k ]T . Consider the case in which the users update their
power allocations sequentially.2 Assume, without loss of generality,
that the users are ordered so that User 1 updates its power allocation
first then User 2 and so on, and that the jammer (User 0) updates its
power allocation last. Hence, in each iteration User k ∈ K updates
its power allocations to solve

s
ν+1
k =

[
s

ν+1
k + ∇sk

Uk(sν
0 , sν+1

1 , · · · ,

s
ν+1
k−1, sk, sν

k+1, · · · , sν
K)

∣∣∣
sk=s

ν+1

k

]
Pk

, (8)

whereas the jammer solves

s
ν+1
0 =

[
s

ν+1
0 + ∇s0

U0(s0, s
ν+1
1 , · · · , sν+1

K )
∣∣∣
s0=s

ν+1
0

]
P0

, (9)

where we use [·]Pk
to denote the projection operator onto the poly-

hedron defined in (6). That is, for any vector x ∈ R
N

[x]Pk
= arg min

y∈Pk

‖y − x‖. (10)

2In [4] we extend our results to include the case in which the users and the
jammer may update their power allocations at arbitrary time instants using,
possibly, outdated noise-plus-interference measurements.
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Using (3) and (4), we can compute the gradients ∇sk
Uk ex-

plicitly. In particular, the n-th entry of ∇sk
Uk for k ∈ {0} ∪ K,

[∇sk
Uk]n, can be expressed as

[
∇sk

Uk(sν
0 , sν+1

1 , · · · , sν+1
k−1, sk, sν

k+1, · · · , sν
K)

∣∣∣
sk=s

ν+1

k

]
n

=

1

σn
k

+
∑

k
j=1

αn
jk

s
n,ν+1

j
+

∑
K
j=k+1

αn
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s
n,ν
j

+αn
0k

s
n,ν
0

, ∀k ∈ K, (11)
[
∇s0
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ν+1
1 , · · · , sν+1

K )
∣∣∣
s0=s

ν+1

0

]
n

=

K∑
k=1

(
αn

0ks
n,ν+1

k∑
K
j=1, j �=k

αn
jk

s
n,ν+1

k
+σn

k
+αn

0k
s

n,ν
0

×

1∑
K
j=1

αn
jk

s
n,ν+1

k
+σn

k
+αn

0k
s

n,ν
0

)
, (12)

where, in (11) and (12), we have used that αn
kk = 1 for all k ∈ K.

From (11) and (12) we observe that for User k ∈ K to update
its power allocation, it is sufficient to measure its own noise-plus-
interference level on each tone, whereas for the jammer to update
its power allocation, it needs, not only to know the power transmit-
ted by each user, but also to know the noise-plus-interference level
experienced by each user on every tone.

3.2. Convergence Analysis

We now present sufficient conditions under which this algorithm
converges to the unique Nash equilibrium of the game. Applying [7,
Proposition 11.13] it can be seen that a tuple of power strategies
{s∗k}

K
k=0 achieves equilibrium if and only if

s
∗
k =

[
s
∗
k + θ∇sk

Uk(s∗0, s
∗
1, · · · ,

s
∗
k−1, sk, s∗k+1, · · · , s∗K)

∣∣∣
sk=s

∗
k

]
Pk

, k ∈ K (13a)

s
∗
0 =

[
s
∗
0 + θ∇s0

U0(s0, s
∗
1, · · · , s∗K)

∣∣∣
s0=s

∗
0

]
P0

, (13b)

for some θ > 0. Since our generalized iterative water-filling al-
gorithm (8)–(9) corresponds to setting θ = 1 in (13), then if this
algorithm converges to a power strategy {s∗k}K

k=0, then it must be a
Nash equilibrium of the game (7). We now present sufficient condi-
tions under which the generalized IWFA converges to a unique Nash
equilibrium point. In particular, let

A =

⎡
⎣

1 0 ··· 0
−α12 1 ··· 0

...
...

. . .
...

−α1K −α2K ··· 1

⎤
⎦ , B =

⎡
⎢⎣

0 α21 α31 ··· αK1

0 0 α32 ··· αK2

...
...

...
. . .

...
0 0 0 ··· αK,K−1

0 0 0 ··· 0

⎤
⎥⎦ ,

and β = [ α01 ··· α0K ]T , (14)

where we define αjk
�
=

∥∥[α1
jk, · · · , αN

jk]
∥∥

2
for all j ∈ {0} ∪ K,

k ∈ K, j �= k. Furthermore, for every k ∈ K, let Fk be anN ×NK
block-diagonal matrix whose n-th 1 × K diagonal block is fn

k ; i.e.,

Fk
�
=

⎡
⎢⎢⎣

f1
k 0 ··· 0

0 f2
k ··· 0

...
...
. . .

...
0 0 ··· fN

k

⎤
⎥⎥⎦ , (15)

where the i-th entry of fn
k , [fn

k ]i, i = 1, . . . , K, is given by

[fn
k ]k =

(Sn
max,0)2

(dn
min,k

)2(cn
min,k

+Sn
max,0

)2
+

∑K
j=1, j �=k αn

jkSn
max,j

(
∑

K
j=1, j �=k

αn
jk

Sn
max,j

+ηn
k

)cn
min,k
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min,k

+
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min,k(cn
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×
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1
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min,k

+ 1
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min,k

+
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min,k

(αn
0k

cn
min,k

+Sn
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)

)
, (16)

[fn
k ]i =

2Sn
max,0Sn

max,k

cn
min,k

(αn
0k

cn
min,k

+Sn
max,k

)dn
min,k

(cn
min,k

+Sn
max,0

)
αn

ik+

(Sn
max,k)2dn

min,k+2Sn
max,kcn

min,k(αn
0kcn

min,k+Sn
max,k)

dn
min,k

(cn
min,k

)2(αn
0k

cn
min,k

+Sn
max,k

)2
αn

ik,

i �= k, i ∈ K (17)

where

cn
min,k = 1

αn
0k

( K∑
j=1, j �=k

αn
jkηn

j + σn
k

)
, (18)

dn
min,k = cn

min,k + 1
αn

0k

ηn
k , (19)

with ηn
k being a lower bound on sn,ν

k . That is, for every iteration ν,
ηn

k ≤ sn,ν
k , ∀k ∈ K, n ∈ N . In [4, Appendix B] we show that ηn

k

is given by

ηn
k =

[
1
N

(
Pk+

mk∑
i=1

σ
πk(i)
k

)
+

(
1
N
−1

) K∑
j=0, j �=k

αn
jkSn

max,j−σ
πk(n)
k

]+

,

wheremk is the largest integer for which

(mk − 1)(σ
πk(j)
k +

K∑
i=0, i�=k

α
πk(j)
ik S

πk(j)
max,i) ≤ Pk +

mk−1∑
i=1

σ
(i)
k ,

is satisfied for all j ≤ mk. For each User k ∈ K, σ(i)
k denotes the

noise variance that satisfies σ
(i)
k ≤ σ

(i+1)
k , for all i = 1, . . . , N − 1,

and πk(·) denotes the tone permutation that satisfies

X
πk(1)
k ≤ · · · ≤ X

πk(N)
k , whereXn

k = σn
k +

K∑
j=0, j �=k

αn
jkSn

max,j .

Theorem 1 (Convergence of GIWFA) Suppose there exists a
scalar τ ∈ (0, 1) such that the following conditions are satisfied

(
1 + (1 − τ )−2

∥∥ K∑
k=1

Fk

∥∥2

2

)
(‖A−1B‖2

2 + ‖A−1β‖2
2) < 1, (20)

max
n
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min,k+
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0k

)

(cn
min,k

)2(cn
min,k

+
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αn
0k

)2
≤ τ + 1, (21)

min
n

∑K
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(
(αn

0k)3ηn
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K
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+αn
0k
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+σn
k

)2

× 1∑
K
j=1, j �=k

αn
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+ηn
k

+αn
0k
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max,0

+σn
k

+
(αn

0k)3ηn
k∑

K
j=1, j �=k

αn
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max,j

+αn
0k
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+σn
k

× 1(∑K

j=1, j �=kαn
jk

Sn
max,j

+ηn
k

+αn
0k

Sn
max,0

+σn
k

)
2

)
≥ 1 − τ. (22)

Then the noncooperative game (7) has a unique Nash equilibrium,
and the iterates generated by the GIWFA algorithm converges to this
unique equilibrium linearly.
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Proof: See Appendix A in [4]. �

Notice that the conditions (20)–(22) only depend on the power
budget of each user, its maximum allowable power on each tone and
the cross-talk coefficients. In many practical scenarios, these param-
eters, or a reasonably accurate estimate thereof, may be known a
priori to the system designer. Hence, these conditions allow the sys-
tem designer to study the impact that a potential jammer may have on
the users’ utilities as well as the utility of the whole system. In Sec-
tion 4 we will present numerical results that show that for scenarios
in which the conditions of Theorem 1 are met, both the users and the
jammer converge, and in [4] we provide instances to show that the
violation of these conditions may cause the algorithm to oscillate.

Observe that for any τ , the condition in (20) implies the stan-
dard IWFA convergence conditions. In particular, for any such τ for
which (20) holds, we have ‖A−1B‖2 < 1. However, in contrast
with the convergence conditions of standard IWFA, the convergence
of the GIWFA in the presence of the jammer depends, not only on
the crosstalk coefficients, but also on the power budgets of both the
users and the jammer.

Condition (22) implies that minn

∑N

k=1 sn,ν
k ≥

minn

∑N

k=1 ηn,ν
k > 0. Thus if sn,∗

k ≡ limν→∞ sn,ν
k , then

minn

∑N

k=1 sn,∗
k > 0. In words, this says that the Nash equilibrium

computed by the GIWFA has the property that, under the assumption
of Theorem 1, every tone n is used by at least one user k. In fact,
it can be verified that if one of the tones is abandoned by all users
at any iteration, the jammer’s strategy to reduce the system utility
may cause the GIWFA to oscillate. Since in the jammer-free case
the users compete but, otherwise have no interest in reducing the
system utility, the oscillation phenomenon is less likely to occur
in the jammer-free case. Another insight offered by Theorem 1
is that if the jammer’s maximum signal power Sn

max,0 on tone n
is sufficiently large so that ηn

k = 0 for all k, then (22) cannot be
satisfied and the convergence of the GIWFA is in jeopardy.

4. NUMERICAL RESULTS

In this section we provide a numerical example that illustrates the
sufficiency of the conditions given in Theorem 1 for the convergence
of the decentralized GIWFA algorithm. For this example, we choose
the number of users, K = 4, and the number of tones N = 10.
The maximum allowable power per tone is set to be constant across
tones for each user as well as for the jammer; i.e., we set Sn

max,k =
Smax,k, n = 1, . . . , 10 for k = 0, . . . , 4.

Example 1 In this example, the system parameters
(i.e, αn

jk, σn
k , Pk, Smax, k, ∀ j �= k, k = 0, . . . , 4) are se-

lected at random so as to satisfy the conditions in Theorem 1. The
users and the jammer update their power allocations using the
GIWFA algorithm described in Section 3.1. For this scenario, in
Figures 1(a) and 1(b) we plot the power allocations of Users 1
and 2 versus the iteration number for all the tones. For the same
scenario, in Figure 1(c) we plot the power allocations of the jammer
versus the iteration number. In each of the plots, three randomly
chosen allocations were used to initialize the fixed-point algorithm.
Since the system parameters were chosen to meet the conditions of
Theorem 1, the algorithm converges to a unique Nash equilibrium,
irrespective of the initial power allocations. In order to quantify the
jammer’s impact on the overall system performance, the sum rate of
all the users over the ten tones is plotted versus the iteration number
in Figure 1(d).
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Fig. 1. The GIWFA iterates converge to a unique Nash equilibrium
irrespective of the initial power allocation.

5. CONCLUSION

In this paper we considered a communication scenario in which K
users and a jammer shareN orthogonal tones. We modelled this sce-
nario as a non-cooperative game, and developed a (decentralized)
extension of the IWFA algorithm for the users and the jammer to
update their power allocations. For this decentralized GIWFA algo-
rithm, we derived sufficient conditions under which the iterates of
the algorithm converge to the unique Nash equilibrium of the game.
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