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ABSTRACT

Finding the power allocations that maximize the sum-rate of a K-
user N -tone Digital Subscriber Line (DSL) system is known to be
NP-hard. In this paper we devise a polynomial-time algorithm to ap-
proximate the maximum sum rate of the system. The development
of this algorithm is guided by the fact that, to approach the sum-
rate maximum, the users should operate in an FDMA-mode over
frequency tones where the crosstalk coefficients exceed a certain
threshold, and should share the tones for which the crosstalk coeffi-
cients are sufficiently small. Drawing on this insight, the algorithm
partitions the N tones into three sections and imposes an appropri-
ate signalling structure on each section. The first section contains
those tones for which the crosstalk coefficients are small and uses an
iterative water-filling technique to determine the power allocations.
The second section contains the tones with intermediate crosstalk
coefficients and uses a primal-dual algorithm, and the third section
contains the tones with large crosstalk coefficients and uses a dual
FDMA algorithm. To decouple the overall optimization of power
allocation across the three sections, we use tools from Lagrangian
duality and sensitivity analysis to devise an iterative scheme that can
optimally allocate each user’s power budget to the three sections.
Our numerical simulations, show that the sum-rate of the proposed
algorithm is very close to that of the ‘optimal’ spectrum balancing
algorithm, but requires considerably less computational effort.

Index Terms— DSL systems, multi-tone communications,
water-filling, spectrum balancing, dual algorithms

1. INTRODUCTION

In a typical Digital Subscriber Line (DSL) system several users share
a common spectrum of N orthogonal narrowband tones. The users
do not collaborate and cannot decode each other’s transmissions [1].
Hence each user treats the interference from the transmissions of
other users as additive Gaussian noise. Due to crosstalk interference,
the performance of each user depends not only on its own transmis-
sion power spectra, but also those of others sharing the same spec-
trum. The goal of the system designer is to determine the power that
each user ought to allocate to each tone in order for the system to
achieve the maximum sum-rate [2].

The problem of finding the power allocations that maximize
the sum-rate is known to be NP-hard [3], and several algorithms
have been proposed in order to provide approximate solutions for
it. For example, the so-called optimal spectrum balancing (OSB) al-
gorithm [4] uses the structure of the primal and Lagrange dual prob-
lems to perform exhaustive search for finding optimal power alloca-
tions. Although the OSB was shown in [4] to yield high sum-rates,
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its computational cost becomes prohibitive even for relatively small
number of users. Another technique for optimizing the power alloca-
tions in a DSL system is the autonomous spectrum balancing (ASB)
algorithm [5]. This algorithm does not require a central node and is
based on the assumption that the users observe a common ‘reference
line’ that enables them to adjust their power allocations. However
this ‘reference line’ is evaluated using empirical parameters which
may not be readily available to the users. In addition to OSB and
ASB, a low-complexity power allocation algorithm that uses succes-
sive convex approximation (SCALE) of the sum-rate objective was
developed in [6]. Similar to ASB, this algorithm does not require
the existence of a central node. Instead, it requires the users to ex-
change their parameters using a message passing algorithm. In the
numerical simulations section, we will compare the performance of
the algorithm proposed herein with that of OSB and SCALE.

The algorithm proposed herein is guided by the fact that [2] if
the crosstalk coefficients between users exceed a certain threshold on
some tones, these tones ought to be operated in a frequency division
multiple access (FDMA) mode in order to approach the maximum
sum-rate of the DSL system. That is, none of these tones ought to
be occupied by more than one user. In addition, we note that if the
crosstalk coefficients between users are close to zero on some tones,
then it is easy to see that, the sum-rate of the system is maximized if
all the users allocate their powers on these tones using a water-filling
approach. These observations suggest that, in a general DSL system,
one can use the crosstalk coefficients to partition the tones into sec-
tions and utilize a different optimization technique on each section.
In particular, we propose to partition the tones into three sections,
where the membership of a tone in one of the sections depends on
whether the crosstalk coefficients on this tone lie below, in between
or above two thresholds. To determine these thresholds, we use a
quasi-bisection optimization technique for relaxing the (somewhat
stringent) thresholds provided in [2].

With the tones partitioned into sections, we deploy an sum-rate
maximization algorithm that is tailored to the signalling structure of
each section. In particular, for the section in which the users oper-
ate in an FDMA mode, we use the FDMA sum-rate maximization
algorithm developed in [7]. The computational efficiency of this al-
gorithm stems from decoupling the Lagrange multiplies that govern
the power allocated on each tone. Now, for the section in which the
crosstalk coefficients are close to zero, we use the classical iterative
water-filling algorithm (IWFA) [8]. In each iteration of this algo-
rithm, each user updates its power allocation so as to water-fill [9]
on the noise-plus-interference levels observed in the previous itera-
tion. Finally, we consider the section of tones in which the crosstalk
coefficients assume intermediate values that are neither large enough
to operate the tones in an FDMA mode, nor small enough to oper-
ate them in an IWFA mode. In this section we propose using the
primal-dual updates algorithm described in [10]. In this algorithm
the primal and the dual variables are updated iteratively using a stan-
dard gradient ascent algorithm. In order to determine the power that
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each user allocates to each section of tones, we develop an iterative
technique that uses a sensitivity analysis to determine the section of
tones that yields the highest sum-rate gain for a given power incre-
ment. This sensitivity analysis exploits the Lagrange dual variables
generated by the algorithms deployed in the three sections. That is,
the FDMA sum-rate maximization algorithm, the IWFA algorithm
and the primal-dual updates algorithm.

Finally, we provide numerical examples that show that the pro-
posed algorithm enables the DSL system to achieve sum-rates that
are very close to those achieved by the OSB algorithm. However,
because of the structure that underlies our algorithm, we manage
to avoid the exhaustive search required by the OSB algorithm and
hence to significantly reduce the, otherwise prohibitive, computa-
tional burden.

2. SYSTEMMODEL AND PROBLEM FORMULATION

Consider a DSL communication system in whichN tones are shared
by K users. Let hn

jk be the complex channel gain between the
transmitter of User j and the receiver of User k on the n-th tone,
where n ∈ N

�
= {1, . . . , N} and j, k ∈ K

�
= {1, . . . , K}. In

this notation hn
kk denotes the channel gain between the transmit-

ter of the k-th user and its intended receiver. Let the crosstalk co-
efficient between Users j and k on the n-th tone be denoted by
αn

jk

�
= |hn

jk|
2/|hn

kk|
2, and let sn

k be the power allocated by User k to
the n-th tone. Assuming that each user uses Gaussian signalling and
that every user can only decode its intended messages, the maximum
rate that User k ∈ K can achieve on the n-th tone is given by [9]

Rn
k (sn

1 , . . . , sn
K) = log

(
1 +

sn
k

Γ
(
σn

k +
∑

j �=k
αn

jksn
j

)
)
, (1)

where σn
k

�
= N0/|h

n
kk|

2 denotes the normalized noise variance ob-
served by User k on the n-th tone, N0 is the variance of the back-
ground Gaussian noise, and Γ is the so-called capacity gap, which
is typically used to account for the non-Gaussianity of the signalling
constellations used in practice [5]. Now, the system designer’s goal
is to find the power allocation that maximizes the over all sum-rate∑K

k=1

∑N

n=1 Rn
k (sn

1 , . . . , sn
K), provided that the total and per-tone

powers utilized by each user do not exceed certain thresholds. In
addition, the system designer may wish to enforce a bit-cap in order
to ensure that the rates communicated on each tone can be supported
by commercial modulators [4]. Using these constraints, it can be
shown that the power allocation problem can be formulated as

max
∑K

k=1

∑N

n=1R
n
k (sn

1 , . . . , sn
K), (2a)

subject to
∑N

n=1s
n
k ≤ Pk, ∀ k, (2b)

0 ≤ sn
k ≤ Sn

max,k, ∀ k, n, (2c)
(
2Bn

k − 1
)−1

sn
k −

∑
j �=k

αn
jksn

j ≤ σn
k , ∀ k, n, (2d)

where Pk, Sn
max,k and Bn

k are the total power budget, the spectral
mask and the bit-cap of User k on the n-th tone, respectively.

3. PROBLEM DECOMPOSITION

Solving (2) directly is known to be NP-hard [11], which makes the
task of finding a global optimal solution rather formidable even for
relatively small systems. As an alternative, we propose to use in-
herent features of the optimal solution [2] in order to decompose (2)
into three subproblems that are relatively easy to solve. In the next
sections we will describe our partitioning methodology.

3.1. FDMA-operated tones

Let F ⊆ N be the set of tones for which

αn
jkαn

kj ≥ 1
4
− δ1, ∀ j �= k ∈ K, (3)

where δ1 ∈ [0, 1
4
] is a designed parameter to be determined. Let

PF,k be the power allocated by User k ∈ K to the tones in F . In
order to understand the role of δ1, we note that one of the key re-
sults in [2], implies that if δ1 = 0, then all the tones in F must be
operated in an FDMA mode in order for the maximum sum-rate to
be approached. However, since this condition is only sufficient, in
some scenarios it may be too stringent and higher sum-rates can be
obtained if more tones are operated in an FDMA mode. Hence, by
operating the tones in F in an FDMA mode, δ1 can be regarded as
a parameter for relaxing the condition in [2].1 For a given PF,k, the
algorithm in [7] can be used to find power allocations that maximize
the sum-rate achieved on the tones in F . This algorithm exploits
the FDMA structure to decouple the power allocated across tones by
assigning each tone to the user with the, so-called, highest ‘shadow
rate’. For a target precision of ε1, the complexity of this algorithm
can be shown to be O(K2 log2 ε1) [2].

3.2. IWFA-operated tones

For this section, letW ⊆ N −F be the set of tones for which

αn
jkαn

kj ≤ δ2, ∀ j �= k ∈ K, (4)

where δ2 < 1
4
− δ1 is a parameter that plays a role similar to the

one played by δ1 in (3). Let PW,k be the power that User k ∈ K
assigns the tones inW . Now, if for the tones inW , αn

jk = αn
kj = 0,

then δ2 can be set equal to zero. Since in this case the users are
completely decoupled, the maximum sum-rate can be achieved by
classic water-filling [9]. However, in practice it is rarely the case
that the crosstalk coefficients are exactly equal to zero, andW will
contain those tones with small, but finite, crosstalk coefficients that
satisfy (4) with sufficiently small δ2. In this case, the maximum sum-
rate on W can be approached by using the iterative, instead of the
classic, water-filling algorithm (IWFA) [8]. The complexity of this
algorithm isO(KN log2 ε1). Similar to δ1, the value of δ2 ought to
be adjusted in order to maximize the sum-rate of the DSL system.

3.3. Tones with unstructured signalling

Finally, let M ⊆ N −F −W be the set of tones on which the
crosstalk coefficients do not satisfy either (3) or (4), and let PM,k

be the power allocated by User k ∈ K to the tones in M. Since
the crosstalk coefficients onM assume intermediate values, the op-
timal signalling structure on M does not necessarily resemble any
of the standard signalling patterns. Hence, we settle for power al-
locations that are locally sum-rate optimal. Such allocations can
be found using the standard the primal-dual updates algorithm de-
scribed in [10]. Similar to IWFA, the complexity of this algorithm is
O(KN log2 ε1).

4. POWER BUDGET PARTITIONING

In the previous section a framework for partitioning the N tones
into F ,W , and M sections was presented. The powers allocated

1Note that while (3) gives a sufficient FDMA optimality condition for any
K ≥ 2, a tighter condition can be used forK = 2; see [2].
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by any User k ∈ K to these sections are PF,k, PW,k, and PM,k,
respectively, where for (2b) to be satisfied, we must have2

PF,k + PW,k + PM,k = Pk. (5)

Our goal now is to find locally optimal PF,k, PW,k, and PM,k that
enable the maximum sum-rate of the DSL system to be approached.
In order to do that, we begin by introducing the following definitions.
Let the k-th entry of Δi

�
= [Δi,1 · · ·Δi,K ] be an additional power

by which User k increments PF,k and PW,k for i = 1 and 2, respec-
tively. With Δi,k defined as such, satisfying the power constraint
in (5), implies that the decrement of PM,k isΔ3,k = −

∑2
i=1 Δi,k.

For given PF,k, PW,k, and PM,k, let g1(Δ1) be the (locally) opti-
mal sum-rate on the F tones for a power incrementΔ1. That is, for
every (sufficiently small)Δ1, g1(Δ1) is the solution of

max
∑

n∈F

∑
k∈KRn

k , (6a)
subject to (2c) and (2d), ∀ n ∈ F , (6b)∑

n∈Fsn
k − PF,k = Δ1,k, ∀ k ∈ K. (6c)

Similarly, one can define g2(Δ2) and g3(Δ3) for the sum-rates on
theW andM tones, respectively. We note that, apart from the con-
straint in (5), the optimization problems that correspond to the func-
tions {gi(·)}

3
i=1 are decoupled. Moreover, each of these problems

can be solved efficiently using the techniques outlined in Section 3.
For brevity, we will focus on g1(Δ1), and the analysis for the

other two functions follows similar paths. Let us consider the La-
grange dual form of (6). For this dual let k-th entry of λ1(Δ1) ∈
R

K be the Lagrange dual variable that corresponds to the k-th con-
straint in (6c). Now, using the sensitivity theorem in [10, Proposi-
tion 3.2.2], we have

∇Δ1
g1(Δ1) = −λ1(Δ1). (7)

This implies that the k-th entry in λ1(Δ1) can be used to quantify
the increase in the sum-rate of User k on F that corresponds to a
power increment ofΔ1,k. Using a similar observation, the Lagrange
dual vectors λi(Δi), i = 2, 3 can be used to quantify the additional
sum-rate that each user can obtain by increasing its power budget by
a small Δi,k, i = 2, 3, on theW andM tones, respectively.

Now, for any initial power partition for which (5) is satisfied
and power increment vectors {Δi}

3
i=1, a (local) maximum of total

sum-rate that can be achieved on the F , W and M tones is given
by

∑3
i=1 gi(Δi), and the the sum-rate increase that corresponds to

increment vectorsΔ1 andΔ2 is

∇Δ1

(∑3
i=1gi(Δ1)

)
= λ3 − λ1, and (8a)

∇Δ2

(∑3
i=1gi(Δ2)

)
= λ3 − λ2, (8b)

respectively. Notice that in writing (8) we have used the fact that
for the power partitions perturbed byΔi, i = 1, 2, 3, to satisfy (5),∑3

i=1 Δi = 0.
Using (8), we can now use a standard gradient ascent algorithm

to find power partitions that yields (locally) maximum total sum-
rate. In order to do that, let the k-th entry of P(ν)

F , P(ν)
W and P

(ν)
M ∈

R
K
+ , be the ν-th iterates of the power partitioning of the k-th user
on the F ,W and M tones, respectively, and let λ(ν)

i , i = 1, 2, 3
be the Lagrange dual vectors generated by the algorithms outlined in
Section 3; viz, FDMA power allocation algorithm described in [7],

2It can be seen that if each user occupies at least one tone inF the optimal
solution of (2) must satisfy (2b) with equality.
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Fig. 1: A flow chart of the SSB algorithm

the IWFA algorithm [8], and the primal-dual updates algorithm [10],
respectively. The steepest ascent algorithm for updating the power
partitions can now be expressed as

P
(ν+1)
F = P

(ν)
F + μ1(λ3 − λ1), (9a)

P
(ν+1)
W = P

(ν)
W + μ2(λ3 − λ2), (9b)

P
(ν+1)
M = P −P

(ν+1)
F − P

(ν+1)
W , (9c)

where P ∈ R
K
+ is the vector of the power budgets of theK users in

K, and μ1, μ2 > 0 are two (diminishing) stepsizes. Our Structured
Spectrum Balancing (SSB) can be summarized using the flow chart
in Figure 1. As shown in this chart, the tone allocation parameters
δ1 and δ2 in (3) and (4) are determined using a two-dimensional bi-
section search with convergence accuracy ε2. For the steepest ascent
algorithm, we used a convergence accuracy ε1. Using the complex-
ity orders given in Section 3, and the exponential convergence of the
bisection method, one can show that the complexity of the SSB al-
gorithm is O

(
NP (2KN + K2) log2 ε2 log2 ε1

)
, where NP is the

maximum number of iterations of the gradient ascent algorithm.
It is worth mentioning that since the power partitioning problem

is not convex, the performance of the algorithm in (9) depends, in
general, on the initial power partitions,P(0)

F ,P(0)
W andP

(0)
M . In order

to generate ‘good’ initial partitions, we begin by assuming thatαn
jk is

zero for all n ∈ N and j �= k ∈ K. In this case the optimum power
allocation is given by the classic water-filling technique. Denoting
the power allocated by User k to the n-th tone by sn,0

k , we choose the
k-th entries of the initial power partitions to be P

(0)
F,k =

∑
n∈F sn,0

k ,
P

(0)
W,k =

∑
n∈W sn,0

k , and P
(0)
M,k = Pk −P

(0)
F,k −P

(0)
W,k. Our exten-

sive numerical experiments have shown that this initialization proce-
dure typically results in sum-rates that are close to the optimal ones
achieved by the significantly more complex OSB algorithm.

5. NUMERICAL RESULTS

In this section we compare the sum-rate and the power spectral den-
sity (PSD) obtained by OSB, IWFA and SCALE with the sum-rate
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Fig. 2: A PSD Comparison for IWFA, SCALE, OSB and SSB

and PSD obtained by the proposed SSB. Due to the prohibitive com-
putational complexity of OSB, we restrict our attention in this exam-
ple to a 2-user scenario and a 256-tone DSL system. The crosstalk
coefficients and spectral masks of this system were generated using
a practical DSL simulator.3 In particular, we simulated a scenario
with one 5 km Central Office (CO) line and one 5 km Remote Ter-
minal (RT) line, where the distance between the CO and the RT was
taken to be 2.5 km . The overall power budget of both users was set
at 20 dBm, the capacity gap, Γ, at 15, the background noise variance
at -140 dBm/Hz, and the bit-cap at 15 bits per tone.

For this scenario, IWFA and SCALE achieve relatively low
sum-rates of about 5.82 and 5.84 Mbps, respectively, whereas OSB
achieves an ‘optimal’ rate of about 7.62 Mbps. On the other hand,
the proposed SSB algorithm achieves a sum-rate of about 7.60Mbps,
which is only slightly less than the sum-rate achieved by OSB. Fig-
ure 2 shows the powers allocated by the four algorithms, and as can
be seen from this figure, the power allocations of SSB resemble, to
a large extent, those of OSB. However, these allocations vary quite
significantly from the power allocations of both IWFA and SCALE.

A key advantage of SSB is that it exploits the structure of op-
timal power allocations to avoid the exhaustive search and the dis-
cretization that underlie the OSB algorithm. In order to provide a
rough comparison between the computational complexity of OSB
and SSB, we measured the Matlab running time of both algorithms
for the current 2-user example. For OSB this time was about 530 sec-
onds, whereas for SSB this time was 22 seconds only.4 This running
time difference becomes more dramatic for systems with more users
because the proposed SSB relies on polynomial-time algorithms that
are significantly more efficient than the exhaustive search of OSB.

As another example, we compare the sum-rate of our proposed
SSB algorithm with that of IWFA and SCALE in a 6-user scenario.5
For this example we use similar parameters to those used in the pre-
vious example, and we generate the crosstalk coefficients using the

3This simulator was provided by R. Cendrillon of Huawei Tech. Co. Ltd.
4The corresponding running times of IWFA and SCALE are 1 and 15

seconds, respectively.
5The computational complexity of OSB has made it rather difficult for us

to provide a sum-rate comparison for this example.

same DSL simulator, but for 2 co-located CO’s and 4 Rt’s. The
lengths of the CO lines were chosen to be 5 and 4 km and those of
the RT lines were chosen to be 5, 5, 4, and 4 km, respectively. The
distance between the CO’s and the RT’s was chosen to be 0.2, 0.2, 3
and 3 km, respectively. For this scenario, IWFA and SCALE could
achieve sum-rates of only 13.0 Mbps and 14.1 Mbps, respectively,
whereas SSB could achieve a sum-rate of 16.7 Mbps.

6. CONCLUSIONS

In this paper we have provided an efficient algorithm for approach-
ing the maximum sum-rate of DSL communication systems. Unlike
previously proposed algorithms, this algorithm exploits the inher-
ent structure that underlies optimal power allocations to partition
the tones into three sections. For each section, it imposes a sig-
nalling structure and maximizes the sum-rate that can be achieved
by this structure. We have shown via numerical simulations that the
proposed algorithm achieves sum-rates that are very close to those
achieved by the significantly more computationally demanding ‘op-
timal’ spectrum balancing algorithm.
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