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ABSTRACT

In this paper we consider a Digital Subscriber Line (DSL) system
withN orthogonal narrowband tones. Each user has a limited power
budget, and our goal is to determine the power allocation of each
user that enables the ‘user capacity’ of the system to be approached.
In this paper, we use ‘user capacity’ to denote the maximum num-
ber of users that can be supported by the system, provided that each
user is guaranteed to have a data rate that lies within a prescribed
range. Finding a power allocation that enables this capacity to be ap-
proached directly can be quite cumbersome because it involves solv-
ing a (non-convex) integer-program. In order to circumvent this diffi-
culty, in this paper we propose an alternate approach that is based on
exploiting the fairness and per-tone convexity of the harmonic mean-
rate objective. Using these features, we devise a computationally-
efficient power allocation technique that enables the user capacity of
the DSL system to be approached more closely than power alloca-
tion techniques that are more computationally demanding.

Index Terms— DSL systems, multi-tone communications,
user-capacity, quality-of-service, dual algorithms

1. INTRODUCTION

Consider a Digital Subscriber Line (DSL) system in which K users
share a common spectrum of N orthogonal tones [1]. Each user has
a limited power budget and wishes to communicate as much data
as possible. However, since a user is typically unable to decode the
signals of other users, it treats the aggregate interference of these
signals as additive Gaussian noise. The system is managed by a
service provider that is assumed to know the crosstalk coefficients
and the power budget of each user. The goal of the service provider
is to allocate the users’ power across tones so as to approach the user
capacity of the system; that being the maximum number of users
that can be supported by the system without breaching the quality-
of-service (QoS) that the each user is entitled to have. (In this paper
the QoS of a certain user is used to refer to the range of data rates
within which this user can communicate reliably.)

The task of directly determining the power allocations that en-
able the DSL system to approach the user capacity is generally
formidable because it involves solving an optimization problem with
a (non-convex) integer-valued objective [2]. In fact, there are many
instances in which the objective is continuous, but the problem of
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allocating power optimally across users and tones is known to be
NP-hard [3]. For example, the problem of finding power-allocations
that maximize the sum-rate was shown in [3] to be NP-hard. This
problem can be solved approximately using the optimal spectrum
balancing (OSB) algorithm developed in [4]. (The approximation
in OSB follows from the discretization and exhaustive search that
underlies this algorithm.) However, the computational cost of this
algorithm is quite prohibitive, which makes it suitable only for sys-
tems with small number of users and tones. A less complex algo-
rithm that can be used to provide approximate solutions for more
practical systems is the so-called autonomous spectrum balancing
(ASB) algorithm [5]. Unlike OSB, the ASB algorithm is decentral-
ized in the sense that it does not require a central node to assign the
power allocations to users. However, it requires auxiliary informa-
tion that may not be always available in practice. Both the OSB and
the ASB algorithms share common drawbacks. For instance, nei-
ther algorithm can be readily tailored to optimize alternative design
objectives, nor to incorporate other design constraints. Moreover,
neither algorithm takes QoS into direct consideration. In particu-
lar, both OSB and ASB tend to allocate power in such a way that
favours stronger users to weaker ones. It is worth mentioning that,
in addition to OSB and ASB, there are other power allocation tech-
niques that can be used by the service provider to allocate the users’
powers across tones. These techniques include the classic iterative
water-filling algorithm (IWFA) [6] and the Successive Convex Ap-
proximation Low Complexity (SCALE) algorithm.

In contrast to other algorithms which focus on traditional sum-
rate objectives, in this paper we consider the problem of maximizing
the number of users that can be accommodated by the DSL system.
The users belong to different categories depending on the QoS that
they purchase from the system provider. This design objective is
integer-valued and hence generally difficult to handle directly. As an
alternative, we consider a design problem in which we maximize the
(weighted) harmonic mean of the users’ rates. This objective pos-
sesses two desirable features: first, from the users’ perspective, this
objective is known to be fairer than maximizing the sum-rate [3];
second, for single-tone systems, maximizing this objective can be
cast as a convex optimization problem for which the global solution
can be obtained efficiently. The first feature renders the harmonic
mean a natural design objective for maximizing the number of users.
This is because for one to be able to compare the number of users
that can be supported by two systems, one ought to guarantee that
the users obtain the same service in both systems. The second fea-
ture, on the other hand, enables us to design an efficient algorithm
that exploits the per-tone convexity to provide power allocations that
yield relatively high harmonic mean-rates. In particular, we begin by
providing a convex lower bound on the harmonic mean-rate. Using
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the dual form, we decompose the problem of maximizing the con-
vex lower bound into several convex optimization problems. These
problems are not coupled across tones, and hence result in low de-
sign complexity. This feature renders this algorithm attractive for
practical application in DSL systems with a large number of users
and tones. Furthermore, in developing this algorithm we show how
to incorporate different QoS levels. With the QoS guaranteed, we
run an outer (quasi-bisection) algorithm for maximizing the num-
ber of users. In particular, for every number of users (with asso-
ciated crosstalk coefficients), we solve a feasibility problem which
serves as an indicator to whether this number of users can be sup-
ported by the system with the prescribed QoS levels. Finally, we
provide numerical results that show that our approach can result in
a DSL system that is fairer and supports more users than the more
computationally-demanding approaches proposed in the literature.

2. SYSTEMMODEL AND PROBLEM FORMULATION

Consider a DSL communication system in whichN tones are shared
by K users. (In practice, a ‘user’ may refer to a central office (CO)
or a remote terminal (RT) that transmit data to a modem at the sub-
scriber’s end.) Let hn

jk be the complex channel gain between the
transmitter of User j and the receiver of User k on the n-th tone,
where n ∈ N

�
= {1, . . . , N} and j, k ∈ K

�
= {1, . . . , K}. In this

notation hn
kk denotes the channel gain between the transmitter of the

k-th user and its intended receiver. Let αn
jk

�
= |hn

jk|
2/|hn

kk|
2, and

let sn
k be the power allocated by User k to the n-th tone. Assuming

that each user uses Gaussian signalling and that every user can only
decode its intended messages, the maximum rate that User k ∈ K
can achieve on the n-th tone is given by [7]

Rn
k (sn

1 , . . . , sn
K) = log

(
1 +

sn
k

Γ
(
σn

k +
∑

j �=k
αn

jksn
j

))
, (1)

where σn
k

�
= N0/|h

n
kk|

2 denotes the normalized noise variance ob-
served by User k on the n-th tone, N0 is the variance of the back-
ground Gaussian noise, and Γ is the so-called capacity gap, which
is typically used to account for the non-Gaussianity of the signalling
constellations used in practice [5]. Now, the total rate that can be re-
liably communicated by User k is given by

∑N

n=1 Rn
k (sn

1 , . . . , sn
K).

Consider the situation in which the service provider wishes to
maximize the number of users that the DSL system can support. For
the service provider to do that, it may maximize the sum rate of all
users, which is given by

∑K

k=1

∑N

n=1 Rn
k (sn

1 , . . . , sn
K). However,

such an approach may result in power allocations that favour strong
users to weaker ones. As an alternative, the service provider may
consider a more balanced approach in which the objective is to max-
imize a weighted sum rate,

∑K

k=1 wk

∑N

n=1 Rn
k (sn

1 , . . . , sn
K)where

the weights, {wk}
K
k=1 are assigned in such a way that favours weak

users to stronger ones. The drawback of this approach is that the
way in which the weights ought to be assigned depends on the chan-
nel gains and the power budget in a non-linear fashion. An approach
that might be more practical from a service provider’s perspective is
to maximize the harmonic mean-rate. This objective does not require
weight assignment and is known to result in rates that are ‘relatively’
fair to all users [3]. The harmonic mean-rate can be written as

H(s1, · · · , sK) =
(∑K

k=1

(∑N

n=1R
n
k

)−1
)−1

. (2)

Now, in order to find the power allocations that maximize this
objective, we ought to solve the following optimization problem:

min 1/H(s1, · · · , sK), (3a)

subject to
∑N

n=1s
n
k ≤ Pk,∀ k, (3b)

0 ≤ sn
k ≤ Sn

max,k,∀ k, (3c)

where in (3a), we have used the fact that maximizing
H(s1, · · · , sK) is equivalent to minimizing 1/H(s1, · · · , sK). We
have also used sk to denote the vector [s1

k, · · · , sN
k ]T , Pk to denote

the total power budget of User k, and Sn
max,k to denote the maxi-

mum signal power that User k can allocate to the n-th tone. In order
for (3b) to be not redundant, we assume that Pk ≤

∑N

n=1 Sn
max,k.

Although it is desirable from the service provider’s perspective
to be able to solve (3), for N > 1, this problem is known to be NP-
hard [8], and hence difficult to solve in a computationally-efficient
manner. As an alternative, in the next section we derive an upper
bound on the objective in (3a). Unlike, the original problem in (3),
this upper bound is convex and hence can be minimized using highly
efficient numerical techniques.

3. AN UPPER BOUND AND QOS CONSTRAINTS

3.1. An upper bound on the harmonic mean-rate

In order to provide an approximate efficiently-computable solution
for the NP-hard problem in (3), we begin by deriving an upper bound
on 1/H(s0, s1, · · · , sK). In particular, using the convexity of the
function f(x) = 1/x, we invoke Jensen’s inequality to write

(
H(s1, · · · , sK)

)−1
=

K∑
k=1

( N∑
n=1

Rn
k

)−1
≤

K∑
k=1

N∑
n=1

(Rn
k )−1, (4)

where the inequality in (4) holds if and only ifN = 1. Note that min-
imizing the right hand side (RHS) of (4) is equivalent to maximizing
the harmonic mean of per-tone rates of users, whereas minimizing
the left hand side of (4) is equivalent to maximizing the harmonic
mean of the users’ overall rates.

We will show that using the RHS of (4) as the design objective
results in a convex optimization problem that possesses a special
structure. In particular, by examining the Lagrange dual form, we
manage to decompose the optimization problem into N decoupled
convex optimization problems that can be solve with high efficiency.
Consider the following optimization problem:

min
∑K

k=1

∑N

n=1(R
n
k )−1, (5a)

subject to (3b) and (3c). (5b)

Using the transformation in [8], we have

tn
k = (Rn

k )−1, and yn
k = log sn

k . (6)

Now, the optimization in (5) can be cast as

min
∑K

k=1

∑N

n=1t
n
k (7a)

subject to yn
k ≤ log(Sn

max,k), tn
k ≥ 0, ∀ k, n, (7b)∑N

n=12
yn

k ≤ Pk, ∀ k, n. (7c)

log
((

σn
k 2−yn

k +
∑
j �=k

αn
jk2(yn

j −yn
k ))(2(tn

k )−1

− 1
))

≤ 0. (7d)

Using the observations in [8], it can be shown that this problem is
convex, and hence, for small-to-moderate number of users and tones,
can be solved using efficient interior point methods [2]. In Section 4
we will show how to exploit the structure of (7) to develop a highly
efficient algorithm for solving problems with many users and tones.
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3.2. QoS: Max Rate and Min Rate Constraints

In a DSL system the service provider determines the range of rates
within which each user operates based on the QoS that this user has
purchased. While the low endpoint of this range provides a guaran-
tee on the minimum data rate that the user can operate at, the high
endpoint may have an commercial value from the service provider’s
perspective. This is because the service provider is typically inter-
ested in limiting the maximum data rate that the user can communi-
cate in order to encourage the user to purchase a higher QoS. If we
denote the low and high endpoints by Rmin and Rmax, respectively,
the rate range over which User k ∈ K operates can be expressed as
the set of rates that satisfy the following constraints:

∑N

n=1R
n
k ≤ Rmax,k, and

∑N

n=1R
n
k ≥ Rmin,k, (8)

where Rn
k is defined in (1). Now, by applying the transformation

in (6), it is easy to see that the first constraint in (8) can be readily in-
corporated in (7) without affecting the convexity of the optimization
problem. Unfortunately, this transformation cannot be readily ap-
plied to cast the second constraint in (8) in a convex form. In order
to circumvent this difficulty, for this constraint we consider a lower
bound on

∑N

n=1 Rn
k . In particular, using (1), the concavity of the

log(·) function and applying Jensen’s inequality one can show that

Rn
k ≥ log

(
1 +

K∑
j=1

αn
jk

)
+

log σn
k

1 +
∑K

i=1 αn
ik

+
K∑

j=1

αn
jk log sn

j

1 +
∑K

i=1α
n
ik

− log
(
σn

k +
∑

j �=k
αn

jksn
j

) �
= Rn

LBk
(9)

From (9) it can be seen that ifRn
LBk

≥ Rmin then Rn
k ≥ Rmin. Un-

like the second constraint in (8), invoking the transformation in (6)
the constraint that Rn

LBk
≥ Rmin can be cast in a convex form and

hence can be easily incorporated in (7). Prior to invoking the trans-
formation, the resulting optimization problem can be cast as:

min
∑K

k=1

∑N

n=1(R
n
k )−1, (10a)

subject to (3b) and (3c), (10b)∑N

n=1R
n
k ≤ Rmax,k, ∀k ∈ K (10c)∑N

n=1R
n
LBk

≥ Rmin,k, ∀k ∈ K, (10d)

where Rn
k and Rn

LBk
are defined in (1) and (9), respectively.

4. A LAGRANGE DUAL-BASED SOLUTION

4.1. The Lagrange dual form

As pointed out in Section 3.1, even though (10) is convex, solving
it directly can be quite computationally unwieldy for systems with
large number of users and tones. In order to alleviate this draw-
back, we seek insight into the structure of (10) by considering the
Lagrange dual function.

d(λ) =
∑K

k=1

(
ςkRmin,k − λkPk − μkRmax,k

)
−

∑K

k=1

∑N

n=1

(
log(1 +

∑K

j=1α
n
jk) +

log σn
k

1 +
∑K

i=1α
n
ik

)
+

∑N

n=1 min
0≤sn

k
≤Sn

max,k

{∑K

k=1

(
(Rn

k )−1 + μkRn
k + λksn

k

+ ςk

(
log

(
σn

k +
∑

j �=k
αn

jksn
j

))
−

∑K

j=1

αn
jk log sn

j

1 +
∑

iα
n
ik

)}
, (11)
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Fig. 1: Primal-dual updating algorithm for solving (10).

where λk ≥ 0, ςk ≥ 0, and μk ≥ 0 are the Lagrange multipliers
that correspond to the constraints in (10).

In order to solve the per-tone minimization in (11), we use the
transformation in (6) to cast this minimization as

min
∑K

k=1

(
tn
k + μk(tn

k )−1 + λk2yn
k + ςk log

(
σn

k +

∑
j �=k

αn
jk2yn

j
)
− ςk

∑K

j=1

αn
jkyn

j

1 +
∑

i
αn

ik

)
, (12a)

subject to yn
k ≤ log(Sn

max,k), tn
k ≥ 0, ∀ k, (12b)

log
(
σn

k 2−yn
k +

∑
j �=k

αn
jk2(yn

j −yn
k )

)
+ log(2(tn

k )−1

− 1) ≤ 0. ∀ k. (12c)

Using standard techniques [2], one can verify that, for a given set of
dual variables {λk}, {ςk}, and {μk}, the problem in (12) is convex
and hence efficiently solvable using interior method techniques.

4.2. An efficient algorithm for solving (10)

In this section we use the observations made in the previous section
to develop an efficient algorithm for solving (10). Our main strategy
is to based on the standard primal-dual updating algorithm [2]. Our
approach can be easily described using the flow chart in Figure 1.
In this chart sn,ν

k and Rn,ν
k are used to denote the power and rate of

User k on the n-th tone at the ν-th iteration, respectively. The ν-th
iterate of the dual variables are denoted by λ

(ν)
k , μ(ν)

k and ς
(ν)
k . These

variables are initiated with arbitrary positive values, and updated at
each iteration ν. Using the iterates at the ν-th iteration, the problem
in (12) is solved using an interior point method. Note that solving
this problem is much less complex than solving (10) directly. This
is because the problem in (12) is solved for each tone separately,
whereas the one in (10) is coupled across the N tones and can be
significantly more difficult to solve for large N . After solving (12),
the dual variables are updated using a steepest-ascent algorithm with
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Fig. 2: Number of users supported by IWFA, SCALE and HMRO.

a diminishing stepsize. The algorithm stops after the sum of square
difference between the old and the current dual variables falls below
a small value ε ≥ 0. Note that because (10) is convex, this algorithm
is guaranteed to converge to the global optimum, provided that the
stepsize is chosen properly; see [2].

5. SIMULATION

In this section we compare the number of users that can be sup-
ported by the proposed harmonic mean-rate optimal (HMRO) algo-
rithm with the number of users that can be supported by SCALE and
IWFA in a DSL communication system with 256 tones. Assuming
that there are seven users that we wish to accommodate in the DSL
system, the crosstalk coefficients and the noise parameters of these
users were generated using a practical DSL simulator.1 The system
model consists of 2 Central Office (CO) and 5 Remote Terminal (RT)
lines, and all users are assumed to have identical power budgets. The
lengths of the CO and RT lines are 5, 4, 3.5, 3.5, 3, 3 and 3 km, re-
spectively, and the distances from the 5 RT’s to the CO’s are set to
be 0.3, 0.5, 0.5, 3 and 3 km, respectively. The background noise
variance is assumed to be N0 = −140 dBm/Hz and the capacity
gap is set to be 15 dB.The users are divided into basic and high-end
service groups. The basic service group consists of Users 1 and 2
with Rmin,k = 0.5 Mbps and Rmax,k = 2Mbps, k = 1, 2, and the
high-end service group consists of Users 3–7 withRmin,k = 2Mbps
and Rmax,k = 12Mbps, k = 3, . . . , 7.

Using these parameters, in Figure 2 we compare the number
of users supported by SCALE and IWFA and the number of users
supported by the proposed HMRO algorithm. From this figure it
can be seen that for the considered range of power budgets, both
SCALE and IWFA support fewer users than the proposed HMRO.
For instance, SCALE can only support 4 users (Users 1 and 5–7)
throughout the entire range of the considered power budgets. How-
ever, IWFA exhibits a more interesting behaviour. At an input power
of 11 dBm, IWFA supports up to 6 users, but as the power increases,
IWFA tends to favour stronger users (Users 6 and 7 in the current ex-
ample) to weaker ones. This tendency eventually incurs a decrease in
the number of users that the system can support. Finally, we consider
the number of users that can be supported by the proposed HMRO.
For an input power of 11 dBm, similar to IWFA, this algorithm sup-
ports 6 Users. However, by increasing the power budget, HMRO
manages to accommodate all 7 users in the system. This perfor-
mance advantage follows from the inherent fairness of the harmonic
mean objective and the versatility with which the system designer
can control the QoS of different classes of users.

1This simulator was provided by R. Cendrillon of Huawei Tech. Co. Ltd.

Finally, we compare the complexity of SCALE and IWFA
with that of HMRO. Denoting the tolerance by ε, the complex-
ity of IWFA and SCALE can be shown to be O

(
KN log2 ε

)
and

O
(
KNL log2 ε

)
, whereL is the number of SCALE updates, respec-

tively [9], whereas the complexity of HMRO is O(KN log2 ε). As
a rough comparison, the average Matlab running time of the IWFA
and SCALE for the scenario considered in this example is about 1
and 15 seconds, respectively, whereas that of HMRO is about 26
seconds. Hence, it can be seen that the computational complexity
of HMRO is comparable to that of IWFA and SCALE, but it can
support significantly more users than both algorithms.

6. CONCLUDING REMARKS

In this paper we have provided a technique for approaching the user
capacity of a multitone DSL system; i.e., the maximum number of
users that can be supported by the system under quality-of-service
constraints. Since maximizing the number of users directly in-
volves (non-convex) integer programming that is typically unwieldy
to solve, we propose to use an indirect technique whereby we max-
imize a harmonic-mean rate objective. Unlike, other popular objec-
tives, the harmonic-mean rate results in fair rate assignments that
do not favour stronger users over weaker ones. In addition, the har-
monic mean-rate possesses a per-tone convexity feature that enables
us to devise a highly efficient algorithm for systems with a large
number of tones. Numerical results show that the proposed tech-
nique enables the system to support significantly more users than
systems designed to maximize sum or greedy individual rates.
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