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ABSTRACT

A precoding strategy for multi-user spectrum sharing over an inter-
ference channel is proposed and analyzed from a game-theoretic per-
spective. The proposed strategy is based on finding the Nash bar-
gaining solution for precoding matrices in a cooperative scenario
over frequency selective channels under a spectrum mask constraint.
An in-time update of the precoding matrices is enabled by using time
slots to guarantee the effectiveness of the bargaining solution when
the number of users varies. A dual decomposition approach is ex-
ploited to construct a distributed structure for solving the bargaining
problem. The proposed distributed algorithm realizes the physical
process of bargaining, which is not present in the Nash bargaining
theory.

Index Terms— Linear precoding, interference channel, Nash
bargaining, cooperative game, duality, dual decomposition.

1. INTRODUCTION

As the demand for spectrum resources keeps increasing, improv-
ing spectrum efficiency is necessary for alleviating the spectrum
scarcity. One approach to improve spectrum efficiency is through
the user cooperation on the same spectrum band, i.e., spectrum shar-
ing [1], [2]. In most cases, wireless users in a system interfere with
each other if they are active simultaneously, and the corresponding
communication channel is called an interference channel. There is a
significant amount of work studying the capacity on an interference
channel from the information-theoretic perspective, such as [3]-[6].
A recent research topic is applications of game-theoretic approaches
for investigation of interference channels.

Equilibria and bargaining theories of game theory can be ex-
plored to analyze the actions of the game players for non-cooperative
and cooperative cases, respectively. There are some existing game
theoretic studies of an interference channel for both cases. A two-
user cooperative game over a flat fading interference channel is stud-
ied in [7], where the users agree to cooperate by sharing the spec-
trum in a frequency division multiplexing (FDM) manner. In [8],
this game is extended to the case of multiple players communicating
over a frequency selective channel, and joint time division multi-
plexing (TDM) and FDM is adopted. A two-user vector game over a
multiple-input single-output (MISO) interference channel is investi-
gated in and the non-cooperative and cooperative beamforming vec-
tors are derived [9]. A matrix-valued multi-user non-cooperative
precoding game over a frequency selective interference channel is
analyzed in [10]. The cooperative Nash bargaining (NB) based so-
lution for the precoding matrices for a two-user game is given in our
previous paper [11].

In this paper, we first extend the result of [11] to the case of
precoding matrices design for a multi-user game. Then an algorithm

is developed to realize the bargaining process among users, and solve
the bargaining problem in a distributed manner.

2. SYSTEM MODEL

Consider block transmissions in an M -user wireless communication
system, for example, an orthogonal frequency-division multiplexing
(OFDM) system. The sampled signal vector received by user i can
be written as

yi = HiiFisi +

j=M∑
j=1,j �=i

HjiFjsj +ni, i ∈ Ω = {1, 2, ...M} (1)

where Hji is the N × N matrix of sampled channel responses be-
tween transmitter j and receiver i (the channel is assumed to be
wideband frequency selective), si is the N × 1 information symbol
block of user i, Fi is the N × N precoding matrix of user i, and ni

is the N ×1 additive Gaussian noise vector with E{ninH
i } = σ2

i I, I
denotes an identity matrix, and (·)H stands for the Hermitian trans-
pose. The information symbols are assumed to be uncorrelated and
E{sisH

i } = I.
Consider the wireless users as players, their choices of precod-

ing matrices as strategies, and the corresponding transmission rates
as their payoffs. The precoding design problem can be viewed as
a game in which benefit of each player depends on the precoding
strategies of all other players. The utility space of this game is an
M -dimensional rate region of the players. The information rate
that a single user i can achieve under the strategy set of all users
{Fi|i ∈ {1, 2, ...M}} is [10]

Ri = log(|I + FH
i (HT

ii)
HR−1

−i HT
iiFi|), ∀i (2)

where R−i = σ2
i +

j=M∑
j=1,j �=i

HT
jiFjFH

j (HT
ji)

H is the noise plus in-

terference for user i, and | · | and (·)T stand for the determinant and
transpose, respectively.

A spectral mask constraint is adopted to limit the maximal
power that each user can allocate on a specific frequency bin.
Denote the maximal power that user i can allocate on the fre-
quency bin k as pmax

i (k). With proper cyclic prefix incorpo-
ration in transmitted symbols, the channel matrix Hji can be
diagonalized as Hji = WΩjiWH , with W being the N × N
IFFT matrix and Ωji being the following diagonal matrix Ωji =
diag(Hji(1), Hji(2), ..., Hji(N)), where Hji(k) is the channel
frequency-response of the kth frequency bin from transmitter j to
receiver i. Then the spectral mask constraint for user i on frequency
bin k can be expressed as [10]

E{|[WHFisi]k|2} = [WHFiFH
i W]kk ≤ pmax

i (k), ∀i,∀k. (3)
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It is assumed that the receivers know the channel information per-
fectly and feed it back to the transmitters without errors.

3. PRECODING STRATEGY OVER FREQUENCY
SELECTIVE CHANNEL: M-USER COOPERATIVE GAME

A Nash equilibrium (NE) solution for the M -user game is a set of
precoding strategies {FNE

i } satisfying the spectrum mask constraint
(3) and

Ri(FNE
i )|Fj=FNE

j , ∀j �=i ≥ Ri(Fi)|Fj=FNE
j , ∀j �=i (4)

which means that no precoding matrix Fi can generate better payoff
for user i than FNE

j given that all other users also apply their strategies
in the NE. The NE based strategies are given as [10]

FNE
i = W

√
diag(pmax

i ), ∀i (5)

where pmax
i = [pmax

i (1), pmax
i (2), ..., pmax

i (N)] is the vector repre-
senting the spectral mask for user i. It is easy to verify that {FNE

i }
here also constitutes a dominant strategy equilibrium, in which each
user chooses the best strategy independent on the choices of other
users.

However, NE may result in an inefficient solution for all users.
This is due to the lack of coordination among users. If the users are
willing to cooperate with each other, they can expect better benefits.
One possible approach to cooperate is through the time sharing on
the frequency bins. By using certain frequency bins exclusively dur-
ing certain portions of time, i.e., TDM/FDM, users are able to avoid
interference from other users. Although TDM/FDM rate region (the
utility space of the TDM/FDM cooperative game) is not the capacity
region of the interference channel, it is an effective method for the
users to cooperate. Moreover, the time sharing among users guaran-
tees a convex utility space, and thus guarantees the existence of the
NB solution.

As a part of cooperative game theory, the NB proposes a unique
solution in a convex set that satisfies four axioms in [12], and maxi-
mizes the following Nash function

F =
∏

i

(Pi − P c
i ) (6)

where Pi is user i’s payoff (information rate) in cooperative case and
P c

i is user i’s payoff in non-cooperative case (NE). The NB solution,
if exists, provides supplementary benefits for all users as compared
to the non-cooperative solution. Moreover, the benefits among users
are distributed based on the so called proportional fairness [13].

To perform the TDM/FDM and find the NB solution of precod-
ing strategies in a cooperative game, we first partition the time into
time slots, each with length T . Then it is easier for the users to per-
form time sharing. Each user is allocated some portion of time on
certain frequency bins in every slot such that no user is kept wait-
ing for a long time on any frequency bin. Moreover, considering the
case when the number of users may change slowly over time, the
partitioning of time slots enables an in-time update of bargaining so-
lution if time slots are small enough, and previous solution can be
terminated with least loss of correctness.

The cooperative solution can be obtained through the following
steps:

Step 1. Initialization: users are in non-cooperative state and the NE
solution is obtained.

Step 2. Computation: the cooperative NB solution for the precoding
matrices is calculated.

Step 3. Implementation: Implement the NB solution for one time
slot. If the number of players changes during this time slot,
go back to step 1; otherwise, repeat step 3.

The following proposition is in order.
Proposition 1: Precoding matrices corresponding to the NB

solution of the M -player TDM/FDM cooperative game over a fre-
quency selective channel are in the form

Fi = WΛi, ∀i ∈ {1, 2, ..., M} (7)

where Λi = Γi(t)
√

diag(pmax
i ), Γi(t) is a diagonal matrix with

its kth element

Γk
i (t) =

{
1, if t ∈ [bk

i , ek
i ]

0, if t /∈ [bk
i , ek

i ]
, ∀i (8)

bk
i and ek

i represent, respectively, the starting and ending moments
between which frequency bin k is allocated to user i in a slot [0, T ].
The following conditions are satisfied

∑
i

Γi(t) = I, ∀t ∈ [0, T ]

Γi(t) � Γj(t) = 0, ∀i �= j, ∀t ∈ [0, T ]

(9)

where t ∈ [0, T ] is the time instant in a current slot and � denotes
the Hadamard product.

Equation (7) states that the diagonal structure remains the same
in the cooperative game but the elements change. The reason that
this diagonal structure remains unchanged follows from the property
of the dominant strategy equilibrium, and the proof is omitted here
due to space limitation. The first equation in (9) states that no fre-
quency bin should be vacant at any time, while the second equation
requests that no frequency bin be used by more than one user at any
time.

It is the length of [bk
i , ek

i ] denoted as αk
i , rather than the specific

values of bk
i and ek

i , that affects the payoffs of the players. Once
the time proportions αk

i are fixed, the order of using frequency bins
actually does not matter to the users. Thus, the key problem is to
calculate the fraction of time αk

i that user i obtains on a frequency
bin k, for all users and all frequency bins. Mathematically, it can be
formulated as the following optimization problem

max
{αk

i }

∏
i

(Ri − RNE
i )

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,∑

i

αk
i ≤ 1, ∀i, Ri > RNE

i , ∀i.

(10)

According to the bargaining theory, the NB solution exists if and
only if problem (10) has at least one feasible point. Also note that
the problem is convex if Ri > RNE

i for all users. We next develop a
distributed solution to this problem.

4. REALIZATION OF NB VIA A DISTRIBUTED
STRUCTURE

Although the NB theory gives a solution of a cooperative game, it
does not provide a constructive way of reaching this solution. Thus,
the bargaining process of solving a specific game needs to be physi-
cally realized. From practical point of view, it is preferable to de-
compose the original problem (10) to distributively solvable sub-
problems.
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First note that the problem (10) can be rewritten as

max
{αk

i }

∑
i

log(Ri − RNE
i )

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k,∑

i

αk
i ≤ 1, ∀i, Ri > RNE

i , ∀i.

(11)

This is a convex optimization problem with a coupling constraint,
which can be solved through dual decomposition. The Lagrange
dual problem of this problem is given as

max
{αk

i }

∑
i

log(Ri − RNE
i ) −

∑
k

λk(
∑

i

αk
i − 1)

s.t. 0 ≤ αk
i ≤ 1, ∀i, ∀k, Ri > RNE

i , ∀i.

(12)

which can be further converted to a two-level optimization problem
with the lower level subproblem given as 1

max
{αk

i }
log(Ri − RNE

i ) −
∑

k

λkαk
i

s.t 0 ≤ αk
i ≤ 1, ∀k, Ri > RNE

i , ∀i

(13)

for each user i, and the higher level master problem given as

min
{λk}

∑
i

Ui(λ) +
∑

k

λk

s.t. λk ≥ 0, ∀k

(14)

where Ui(λ) is the maximum value of the objective function in (13)
given λ = [λ1, λ2, ..., λN ]. It is the dual problem, rather than the
original one, that can be solved using the distributed structure with a
coordinator. However, since the original problem is convex, strong
duality holds and the solutions of the dual and the original problems
are the same if slater condition [15] is satisfied. For this specific
problem, we have the following proposition.

Proposition 2: The slater condition is guaranteed to be satisfied
as long as the NB solution exists, i.e., there exists 0 ≤ αk

i ≤ 1 such
that

Ri > RNE
i , ∀i. (15)

The proof is omitted here due to space limitations.
Note that proposition 1 in the previous section may be used to

further simplify the dual problem. Substituting (7) into the objective
function of the sub-problem (13) and considering the cooperation in
a unit of time (T=1), the final form of the lower level subproblem
can be written as

max
αk

i

log(

N∑
k=1

αk
i Rk

i − RNE
i ) −

∑
k

λkαk
i

s.t. 0 ≤ αk
i ≤ 1, ∀k,

N∑
k=1

αk
i Rk

i > RNE
i , ∀i.

(16)

where Rk
i = log(1 + |Hii(k)|2pmax

i (k)/σ2) is the rate on the fre-
quency bin k for user i.

The lower level subproblems are solved distributively by the cor-
responding users. Note that each Lagrange problem (16) is guaran-
teed to be convex and thus a unique solution exists. More impor-
tantly, the information required to solve the ith subproblem, i.e. Rk

i

and RNE
i , is local to user i.

1This technique is similar to the one used in [14].

Table 1. Dual decomposition algorithm for NB.

1. The coordinator initializes λ=λ0 and broadcasts it to all
users.

2. Each user solves (16) according to the present value of λ
and transmits its solutions for {αk

i } to the coordinator.

3. The coordinator updates λ according to the gradient of the

master problem (14): λ̂k = [λk − δ(1 − ∑
i

αk
i )]+, ∀k.

4. If ∀k, |λ̂k − λk| ≤ ξ, stop; otherwise broadcast λ̂ and go to
step 2.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

number of iterations

NF
R1

NB

R2
NB

R3
NB

R4
NB

Fig. 1. Instantaneous information rate of users and the corresponding
values of Nash function versus number of iterations.

A coordinator is required to solve the higher level master prob-
lem. Since the overhead of information exchange and computation is
not significant, one user may be selected as a coordinator. All users
may also work as the coordinators in a round-robin manner.

The complete process of solving the dual problem can be sum-
marized using the implementation algorithm shown in Table 1,
where δ and ξ are the step length and the stopping threshold respec-
tively, and (·)+ denotes the projection onto non-negative subspaces.

Note that the coefficients {λk}N
k=1 have specific physical mean-

ings. Indeed the coefficient λk represents the risk that cooperation
among users breaks up due to a conflict on sharing frequency bin
k. Thus, in the lower level subproblems, the objective for each user
consists of two parts. Taking user i as an example, it can be de-
scribed as follows. On one hand, a larger αk

i is preferred to increase
the total information rate. On the other hand, if αk

i becomes too
large, the cooperation may break up and the payoff of user i returns
to the inferior competitive solution.

5. SIMULATION RESULTS

Consider a four-user case with six frequency bins. The channel is
assumed to be Rayleigh fading with noise power equaling to 0.01
for each user.

For a given step length δ and stopping threshold ξ, the iterations
of bargaining are shown in Fig. 1. The four curves on the upper side
of the figure are the instantaneous information rates that the users
can achieve, and the curve at the bottom shows the corresponding
value of the Nash function, i.e., the objective function of the origi-
nal optimization problem (10). The final NB and NE solutions and
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the comparison between them are shown in Table 2. It can be seen
that all users gain supplementary benefit from cooperation. The cor-
responding final allocation of time portions on each frequency bin
for each user is shown in Fig. 2. It can be seen that the frequency
bins 1, 2, 3, and 4 are occupied exclusively by the users 3, 4, 1, and
2, respectively. The frequency bins 5 and 6 are shared between the
users 1 and 4, and 2 and 3, respectively. Fig. 3 shows the effect

1
2

3
4

1
2

3
4

5
6

0

0.2

0.4

0.6

0.8

1

i (user)
k (bin)

α ik

Fig. 2. Allocations of time portions on frequency bins {αk
i }.

of the step length on the convergence speed of the algorithm. With
the values of δ ∈ {0.3, 0.2, 0.1}, the values of the Nash functions
are shown in the corresponding sub-figures. It can be seen that the
algorithm is quite time-efficient with a good choice of step length.
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Fig. 3. Nash function versus number of iterations under different
step length, δ ∈ {0.3, 0.2, 0.1}.

6. CONCLUSIONS

The precoding strategies for the multi-user cooperative game over
frequency selective fading interference channels are developed. Us-
ing TDM/FDM in cooperation, the problem of finding the optimal
precoding matrices in a cooperative case turns to be equivalent to
the problem of determining time portions allocated to each user. The
latter problem is convex and can be solved in a distributed manner
using a dual decomposition method, which physically realizes the
process of bargaining among users. The physical meaning of the La-
grange multipliers in the dual problem are shown to be the risks that

Table 2. Value of NE and NB solutions corresponding to Fig. 1.

User NE Solution NB solution Increased by

1 1.1296 2.2707 101.02%

2 1.4014 2.4906 77.72%

3 1.2952 2.3992 85.24%

4 1.6957 2.4175 42.56%

cooperation may break up. The simulation results demonstrate the
advantages of the cooperative strategy over the non-cooperative one.
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