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ABSTRACT

Dynamic allocation of power, rate and channel access is a
critical task in wireless networks. Capitalizing on convex op-
timization and stochastic approximation tools, this paper de-
velops a stochastic resource allocation algorithm that mini-
mizes average transmit power under individual average rate
constraints. Focus is placed on networks where users trans-
mit orthogonally over a set of parallel channels and transmis-
sions are adapted based on quantized channel state informa-
tion (CSI) allowing even channel statistics to be unknown.
Convergence of the developed stochastic scheme is charac-
terized and the average queue delays are obtained in closed
form.

Index Terms— Resource management, cross-layer de-
sign, stochastic approximation, multiuser channels, delay ef-
fects.

1. INTRODUCTION

The benefits of implementing adaptive scheduling and resource
allocation for multiple access fading channels are well docu-
mented; see e.g., [1] for a tutorial treatment. Early efforts
were focused on adaptation of rate, power and channel ac-
cess per fading state so that a specific performance measure
(e.g., ergodic capacity) is optimized while satisfying quality
of service (QoS) requirements (e.g., average power consump-
tion). This optimization was typically carried out assuming
that both channel probability density function (PDF) and the
instantaneous channel realization are perfectly known. How-
ever, in many practical wireless scenarios those assumptions
are unrealistic. On one hand, errors in estimating the channel,
feedback delay and the asymmetry between forward and re-
verse links render acquisition of perfect CSI impossible. For
such cases, only quantized (Q-) CSI that can be pragmatically
obtained through finite-rate feedback. On the other hand,
channel statistics of the full system may be difficult to acquire
due to a large number of users or non-stationarities. Stochas-
tic approximation algorithms naturally emerge as a means of
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bypassing this problem and accounting for channel variations
[2].
In response to these challenges, the present paper investi-

gates scheduling and resource allocation for orthogonal multi-
access transmissions over fading channels with unknown sta-
tistics when only Q-CSI is available both at the receiving
and transmitting ends. Using as starting point our results in
[3], we minimize an average power cost subject to QoS con-
straints on average rate and bit error rate (BER). The main
contribution of this work is twofold: (i) we develop an adap-
tive stochastic algorithm capable of learning the intended chan-
nels on-the-fly and converging to the optimal value; and (ii)
we characterize the average delay of the proposed algorithm.1

2. DYNAMIC RESOURCE ALLOCATION

Consider a wireless network with M users, indexed by m ∈
{1, . . . , M}, who transmit overK flat-fading orthogonal chan-
nels, indexed by k ∈ {1, . . . , K}, to a common destination
(e.g., base station, access point or ad-hoc network). Assuming
zero-mean additive white Gaussian noise (AWGN) with unit
variance, let gm,k represent the instantaneous power fading
gain of the kth channel between themth user and the destina-
tion; andG theM × K matrix with entries [G]m,k := gm,k.
Let the domain of each gm,k be divided into different regions.
Instead of assuming that sources and destinations know gm,k

(perfect CSI), here only the index of the region gm,k falls into
(represented by jm,k) is known. Let J denote theM ×K ma-
trix with entries [J]m,k := jm,k, which represent the Q-CSI
of the entire system. Since gm,k is random, the index jm,k is
a discrete random variable (and J is a random matrix with J
representing the set of possible realizations of J).
As in [4], users are allowed to access simultaneously any

of the channels. Let matrix W represent the allocation pol-
icy whose [W]m,k entry corresponds to the portion of the
kth channel dedicated to themth user with

∑M
m=1[W]m,k ≤

1Notation: We use boldface upper (lower) face letters to denote matrix
(column vectors); (·)T denotes transpose; [·]k,l denotes the (k, l)th entry of
a matrix, and [·]k the kth entry of a vector. Calligraphic letters denote sets,
with |X | denoting the cardinality of the set X . If g is a continuous function,
ġ denotes its derivative. Finally ∧ denotes the logical “and” operator, and
I{·} the indicator function (I{x} = 1 if x is true and zero otherwise).
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1,∀k. Let P and R represent the system power and rate ma-
trices of size M × K. When the mth user is the only one
accessing the kth channel, the entries [P]m,k and [R]m,k rep-
resent nominal transmit-power and nominal transmit-rate, re-
spectively. As the system is going to adapt the resources de-
pending on J, it follows that W = W(J), P = P(J), and
R = R(J) and consequently each of them can take, at most,
|J | different values. Finally, let Υ (Υ−1) be the power-rate
(rate-power) function that through QoS requirements links
[P]m,k and [R]m,k in the same region R (wherever appro-
priate, we will write ΥR([J]m,k) to stress this fact). For illus-
tration purposes, consider a system whose QoS requirements
impose a maximum instantaneous BER of ε̌max, and symbols
are drawn from QAM constellations. The maximum BER
for a given region can then be approximated by εmax = 0.2
exp((−gmin

m,k([J]m,k)pm,k /(2rm,k −1)), cf. [1, Eq. (9.8)];
where gmin

m,k([J]m,k) := mingm,k
{gm,k ∈ R([J]m,k)}. For

this case,ΥR([J]m,k) can be written asΥR([J]m,k) (x) = ((2x−
1) ln(0.2 /ε̌max)) /gmin

m,k([J]m,k)

2.1. Problem Formulation

We are interested in minimizing the average weighted transmit-
power subject to individual average rate constraints. For er-
godic channels, the average transmit-power and rate for the
mth user are, p̄m :=

∑
∀J

∑K
k=1([P(J)]m,k[W(J)]m,k) Pr{J}

and r̄m :=
∑

∀J
∑K

k=1([R(J)]m,k[W(J)]m,k) Pr{J}, respec-
tively. Note that evaluating Pr{J} requires knowledge of the
channel quantizer and the channel PDF.
Positive power weights μ := [μ1, . . . , μM ]T and indi-

vidual rate constraints ř := [ř1, . . . , řM ]T will be used to
effect different priority levels among users. Taking into ac-
count these observations, the optimal resource allocation can
be obtained as the solution of the following constrained opti-
mization problem⎧⎪⎨

⎪⎩
minR(J)≥0,W(J)≥0

∑M
m=1[μ]mp̄m

s. to : r̄m ≥ [̌r]m, ∀m,∑M
m=1[W(J)]m,k ≤ 1, ∀k,∀J

(1)

Since ΥR([J]m,k) linksR with P, only optimization over one
of them is required. Assuming that Υ is strictly convex, (1)
can be optimally solved using Lagrangian relaxation [3].

2.2. Optimal Resource Allocation

Let λR be anM × 1 vector whosemth entry is the Lagrange
multiplier associated with the mth rate constraint. Consider
the rate allocation (recall ẋ denotes derivative of x)

[R(J)]m,k = Υ̇−1
R([J]m,k)

(
[λR]m
[μ]m

)
I{Υ̇−1 [λR]m

[μ]m
>0} (2)

where Υ̇−1
R([J]m,k) is the inverse function of Υ̇R([J]m,k). We

use (2) to define the cost of allocating user m to channel

k as [CW(J)]m,k := [μ]mΥR([J]m,k)([R(J)]m,k) − [λR]m
[R(J)]m,k. With ε representing a small positive number, we
also define the vector [cW

∗ (J, λR))]k := minm{[CW (J,
λR))]m,k}M

m=1, and the setM(J, k) := {m : ([CW(J, λR)
]m,k − [cW

∗(J, λR))]k < ε) ∧ ([cW
∗(J, λR))]k < 0)}.

Based on the previous definitions, the following channel allo-
cation (scheduling) is considered

[W(J, λR)]m,k := I{m∈M(J,k)}× (3)(
1 − [CW(J,λR)]m,k−[cW

∗(J,λR)]k
ε

)2

∑
m∈M(J,k)

(
1 − [CW(J,λR)]m,k−[cW

∗(J,λR)]k
ε

)2 .

When scheduling in (3) is implemented, only users inM(J, k)
(those with minimum cost) can access channel k. For most
channel realizations, the set M(J, k) will contain a single
user, rendering the access opportunistic. However, there will
also exist realizations for which |M(J, k)| > 1, and then a
small group of users will access the channel. Using the re-
sults in [3], it can be proved that: the scheduling in (3) and
the rate (thus power) allocation in (2) are asymptotically op-
timal.
It is important to underscore that CSI affects the optimal

allocation in two different ways. On one hand, it depends
on the current channel realization J. On the other hand, it
depends on the channel PDF via the Lagrange multiplier. De-
tails of the computation of λR will be provided in the next
section.

3. STOCHASTIC LAGRANGE MULTIPLIERS

Upon defining theM × 1 vector ∂sD(λR) with entries [∂sD
(λR)]m := [̌r]m − r̄m(λR), the optimum value of the multi-
plier vector can be obtained through the iterations

λR(i)
=

[
λR(i−1)

+ β∂sD(λR(i−1)
)
]+

(4)

where β is a small stepsize and i the iteration index (cf. [3,
Prop. 5]). The computation of λR using (4) is performed off-
line and requires knowledge of the channel statistics. Specif-
ically, to find r̄m(λR), the probabilities Pr{J} have to be
known ∀J. However, there are cases where this computation
cannot be efficiently carried out or is not even feasible. Such
cases include scenarios where the set-up (number of users,
channel statistics, QoS requirements) changes so frequently
that λR has to be continuously re-computed. Other examples
include limited-complexity systems that cannot afford the off-
line burden, or, when the channel statistics are unknown. For
those cases, stochastic approximation arises as an alternative
approach to estimating λR [2].
Let n denote the current block index (whose duration will

correspond to the coherence time), J[n] the fading state dur-
ing block n, and rm(J[n], λR[n]) :=

∑
∀k[R(J[n],λR[n])]m,k
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[W(J[n], λR[n])]m,k the instantaneous transmit-rate for user
m. Our proposal is to replace ∂sD(λR) by its stochastic
version ∂sD(J[n],λR), with [∂sD(J[n], λR)]m := [̌r]m −
rm(J[n], λR). Using this definition, the original iterations
over λR in (4) can be replaced by the stochastic estimates

λ̂
R
[n] =

[
λ̂

R
[n − 1] + β∂sD(J[n], λ̂

R
[n − 1])

]+

. (5)

It must be emphasized that the stochastic iterations in (5) take
into account the entire history of the channel. Specifically,
J[n] is explicitly considered as an argument of ∂sD() while
J[0], . . . ,J[n − 1] are implicitly considered via λ̂

R
[n − 1].

It can be shown that for sufficiently small β the trajec-
tories of the iterations in (4) and (5) are locked and the sto-
chastic iterates in (5) converge to λR. In a nutshell, we have
established the following result.

Theorem 1 With similar initial conditions in (4) and (5) and
given T > 0, there exist bT > 0 and βT > 0 so that

max
1≤n≤T/β

‖λR(n) − λ̂
R
[n]‖ ≤ cT (β)bT 0 ≤ β ≤ βT

where cT (β) → 0 as β → 0.

The result in Theorem 1 can be proved using the averag-
ing approach in [5, Ch. 7]. Following the averaging method
for the approximation of the trajectory of the difference (or
differential) equations, updates in (5) and those in (4) can be
seen as a pair of primary and averaged systems. Under gen-
eral conditions, it is possible to show trajectory locking of
these two systems via [5, Th. 7.2 and 7.3]. The full proof
of the proposition is omitted due to space limitations, but the
main idea is that the Lipschitz continuity of ∂sD(J[n],λR)
with respect to (w.r.t.) λR can be used to prove that the most
challenging conditions required in [5, Th. 7.2 and 7.3] hold.

4. QUEUEING AND DELAY ANALYSIS

Although not explicitly mentioned, the average rate constraint
in (1) assumes the existence of a sufficient large input queue
in every terminalm. This way, packets arriving at a rate [̌r]m
are stored in the queue and transmitted in a first-in-first-out
(FIFO) fashion every time themth user is scheduled to access
the channel. In this context, it is of interest to characterize the
dynamics of the queues as well as the delay performance of
the resource allocation algorithm.
The first step is to recognize that the arrival rates of pack-

ets follow a random pattern as long as the average arrival
rate is [̌r]m. In other words, if am[n] denotes the number
of arriving bits at slot n, then any arrival pattern satisfying
ām[n] = [̌r]m should be admissible. Random arrival rates
can be incorporated into our stochastic algorithm by consid-
ering the following modified version of ∂sD(J[n], λR[n])

[∂sD(J[n], λR[n],a[n])]m := am[n] − rm(J[n], λR[n]) (6)

where the constant term [̌r]m has been replaced by the sto-
chastic am[n]. As far as the instantaneous arrivals are bounded
(i.e., am[n] < ∞), it can be shown that the convergence
claimed in Theorem 1 still holds when ∂sD(J[n],λR[n]) in
(5) is replaced by ∂sD(J[n], λR[n],a[n])).
To analyze the stability of the resource allocation algo-

rithm, the queue dynamics need to be characterized. With
qm[n] denoting the queue size of user m at the beginning of
slot n, themth queue with arrival rate of am[n] and departure
rate rm(J[n], λR[n]), obeys the recursion

qm[n + 1] =
[
qm[n] − rm(J[n], λR[n])

]+

+ am[n]. (7)

Substituting (6) into (5) and comparing the modified version
of (5) with (7), we can conclude that: the size of the queues
can be interpreted as a scaled version of the stochastic La-
grange multipliers. Specifically, if qm[0] = λ̂

R
[0] = 0 we

have qm[n] ∼= [λ̂
R
[n]]m/β. In fact, the only difference be-

tween the recursions for qm[n] and those for [λ̂
R
[n]]m/β is

the way in which the projection operation in [·]+ is imple-
mented. Nevertheless, since the rate constraints are always
active (i.e., λ̂

R
are strictly positive), after an initialization pe-

riod the projection operation is transparent and the approxi-
mation qm[n] = [λ̂

R
[n]]m/β is accurate.

The previous result can help us characterize the stability
and average delay of our stochastic resource allocation algo-
rithm. On one hand, we know that: (i) a system is stable
if qm[∞] < ∞, and (ii) the feasibility of (1) implies that
[λR]m = [λ̂

R
[∞]]m < ∞. From these considerations, we

can readily conclude that our algorithm has a stable behavior.
On the other hand, Little’s result [6] asserts that with stable
queues the average delay is given by the average queue length
divided by the average arrival rate, i.e. d̄m = q̄m/ām. This in
turn leads to an estimate of the average delay as

d̄m
∼= [λR]m/(β [̌r]m). (8)

In other words, the average delay of our stochastic algorithm
can be estimated based on the optimal solution of (1), the rate
requirements and the stepsize of the proposed iterations. It
is worth mentioning that although in most cases the value of
[λR]m is not available in closed-form, convex optimization
theory can be used to decipher properties of [λR]m. Specif-
ically, analyzing the sensitivity of [λR]m w.r.t. [̌r]m will be
critical to characterize how d̄m varies w.r.t. [̌r]m.
Finally, it is important to stress the cross-layer character-

istics of our stochastic algorithm. The scheduling in (3), pri-
oritizes users with higher values of [λR]m (higher [λR]m will
incur lower cost [CW(J)]m,k ∀k and thus a higher probabil-
ity of accessing the channel). Since [λ̂

R
[n]]m ∼= βqm[n], it

is easy to deduce that users with larger queues have higher
probability of being scheduled.
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Fig. 1. Average power and rate.
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Fig. 2. Queueing and Delay.

5. SIMULATIONS

To numerically test our designs, we consider that each gm,k

domain is divided into 5 scalar quantization regions. We will
further assume that fading processes for different users are
uncorrelated, channels are complex Gaussian distributed and
symbols are drawn from QAM constellations so that the BER
can be approximated by 0.2 exp (−gm,kpm,k/(2rm,k − 1)).
We test an OFDMA system with M = 4, K = 64, and 8
exponential taps that requires ř = [16, 32, 48, 64]T and BER
not exceeding 10−3 per user. Arrival rates follow a Poisson
distribution with p = 0.5; stochastic iterations in (6) with β =
10−3 are implemented and the quantization regions simulated
correspond to the low-complexity quantizer of [4, Sec. IV.B].
Figure 1 shows the time-evolution of the average power

(top) and rate (bottom) for each user. Specifically, solid lines
represent ˆ̄pm(n) = 1

n

∑n
k=1 pm[n] and ˆ̄rm(n) = 1

n

∑n
k=1 rm

[n], while dotted lines depict the values obtained from the
optimal off-line solution (assuming perfect knowledge of the
channel PDF). The results indicate that the proposed algo-
rithm converges to the optimal values (minimum power cost
while satisfying the rate constraints) in a finite number of iter-
ations. Results related with the queueing dynamics and delay
are presented in Figure 2. In the first subplot solid lines rep-

resent [λ̂
R
[n]]m, while dotted lines depict the optimal values

[λR]m obtained from the off-line solution. The second sub-
plot shows the queues size of each user. Clearly, users with
higher rate requirements have larger queues. On the other
hand, comparing the trajectories of qm[n] and [λ̂

R
[n]]m, we

verify the validity of the approximation qm[n] ∼= [λ̂
R
[n]]m/β.

The third subplot represents the expected delay at every time
instant, and confirms the accuracy of the approximation in (8).
Interestingly, simulations show that users with higher rate re-
quirements, experience smaller delays; hence, the algorithm
“prioritizes” information of users with high rate demand.

6. CONCLUSIONS

We developed a stochastic cross-layer algorithm that relies on
a quantized version of the fading realization to specify power,
rate and scheduling decisions so that the average weighted
transmit-power is minimized. The resultant resource alloca-
tion is a function of the current channel realization and the
Lagrange multipliers whose values depend on the history of
the channel and the QoS requirements. The algorithm ac-
quires the channel statistics on-the-fly and has provable con-
vergence. Last but not least, upon identifying a relationship
between the size of the input queues and the Lagrange multi-
pliers, we were able to obtain the average queue delay of the
novel scheme.2
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