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ABSTRACT

This paper deals with the problem of discriminating samples that
contain only noise from samples that contain a signal embedded
in noise. The focus is on the case when the variance of the noise
is unknown. We derive the optimal soft decision detector using a
Bayesian approach. The complexity of this optimal detector grows
exponentially with the number of observations and as a remedy, we
propose a number of approximations to it. The problem under study
is a fundamental one and it has applications in signal denoising,
anomaly detection, and spectrum sensing for cognitive radio. We
illustrate the results in the context of the latter.

Index Terms— spectrum sensing, denoising, anomaly detection

1. INTRODUCTION

This paper deals with the problem of discriminating samples that
contain only noise, from samples that contain a signal embedded
in noise. More precisely, out of a total of M observations yi,
i = 1, ..., M , we want to determine which samples that are real-
izations of a noise process and which samples that contain a signal
corrupted by additive noise. If the distribution of the noise is known
and the observations yi are independent, then an energy detector is
essentially optimal, and it consists of comparing each |yi| to a thresh-
old. The focus of our work is on the case when the noise variance
is unknown (but the same for all observations). In this case, the ob-
servations yi become correlated and the optimal detector cannot be
implemented by simple thresholding of |yi|. We derive the optimal
detector in a Bayesian framework, and devise a computationally ef-
cient approximation of it.

The main motivating application for the problem under study is
spectrum sensing for cognitive radio. The key problem in cognitive
radio is to nd “spectrum holes”, and to do this one must detect very
weak signals. Typically, multiple bands are scanned simultaneously
[1, 2], and yi is then the observation in the ith band. In spectrum
sensing applications, one may also wish to combine many indepen-
dent spectrum measurements at a fusion center [3, 4]. To facilitate
this, the detectors should deliver reliability information on their de-
cisions (“soft decisions”). What is important is then not only to take
individual, hard decisions on whether a signal is present in a speci c
band i, but to determine the a posteriori probability that there is a
signal present in band i, given all available observations.
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Two other important applications of the problem we study here
are denoising of data (e.g., see [5]) and detection of anomalies in
time-series [6]. The problem also has connections to sparse signal
modeling. In particular, it can be viewed as a special case of linear
regression with a sparse coef cient vector [7] and with an identity
matrix as regression matrix. The main contribution of this paper rel-
ative to [7] is that we deal systematically (in a Bayesian framework)
with the case of unknown noise variance, and that we derive a soft
output detector. We also provide illustrations in the context of coop-
erative spectrum sensing for cognitive radio.

2. PROBLEM FORMULATION

We assume that we have M independent observations yi, i =
1, 2, . . . , M . Each observation contains noise ni only, with prob-
ability p, and a signal xi embedded in noise with probability 1 − p.
That is: (

yi = ni, with probability p,

yi = xi + ni, with probability 1 − p.

We assume that the noise and signal are independent zero-mean
Gaussian random variables with different variances, more precisely:
ni ∼ N(0, σ2), and xi ∼ N(0, ρ2). The noise variance σ2 and the
signal variance ρ2 are assumed to be unknown. (If they were known,
the optimal detector would simply consist of M independent binary
hypothesis tests; see also the end of Section 3.)

We de ne the following 2M hypotheses:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

H0 : y1 = n1, y2 = n2, · · · , yM = nM ,

H1 : y1 = x1 + n1, y2 = n2, · · · , yM = nM ,

H2 : y1 = n1, y2 = x2 + n2, y3 = n3, · · · , yM = nM ,
...
H2M−2 : y1 = x1 + n1, y2 = x2 + n2, · · · ,

yM−1 = xM−1 + nM−1, yM = nM ,

H2M−1 : y1 = x1 + n1, y2 = x2 + n2, · · · ,

yM = xM + nM .

We assume that the signal presence is independent between all ob-
servations. Thus, we obtain the following a priori probabilities:8>>>>>><>>>>>>:

P (H0) = pM ,

P (H1) = P (H2) = · · · = P (HM ) = (1 − p)pM−1,
...
P (H2M−M−1) = · · · = P (H2M−2) = (1 − p)M−1p,

P (H2M−1) = (1 − p)M .
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For each hypothesis, Hi, let Si be the set of observation indices for
which signal is present:8><>:

S0 = ∅, S1 = {1}, S2 = {2}, SM = {M}, · · · ,

SM+1 = {1, 2}, SM+2 = {1, 3}, · · · ,

S2M−2 = {1, 2, · · · , M − 1}, S2M−1 = {1, 2, · · · , M}.

Then the likelihood of the received sequence y = (y1, y2, · · · , yM )
under hypothesis Hi, and for given σ and ρ, is

P (y|Hi, σ, ρ) =
Y

k∈S̄i

1√
2πσ

exp(− 1

2σ2
|yk|2)×

Y
k∈Si

1p
2π (σ2 + ρ2)

exp(− 1

2 (σ2 + ρ2)
|yk|2).

3. OPTIMAL DETECTOR

Using Bayes rule, we can write the a posteriori probability of hy-
pothesis Hi given y, σ and ρ, as

P (Hi|y, σ, ρ) =
P (y,Hi|σ, ρ)

P (y|σ, ρ)
=

P (y|Hi, σ, ρ)P (Hi|σ, ρ)

P (y|σ, ρ)
.

The hypotheses Hi are assumed to be independent of the variances
σ and ρ. Hence, P (Hi|σ, ρ) = P (Hi).

Ultimately we are typically interested in the probability of the
event that a signal is present in the ith observation, given y. Let Ωi

denote this event. The probability of Ωi, given the observation y,
can be written

P (Ωi|y) =
X

k:i∈Sk

P (Hk|y) =

P
k:i∈Sk

P (y|Hk)P (Hk)P2M−1
m=0 P (y|Hm)P (Hm)

, (1)

where P (y|Hk) is P (y|Hk, σ, ρ) with σ and ρ eliminated (via
marginalization, or using approximations such as inserting estimates
of σ and ρ). In the following sections we discuss how to deal with
this marginalization problem.

Often one is interested in combining decisions on Ωi made by
different sensors. An important example is cooperative spectrum
sensing (see discussion in Section 1). To facilitate such combining
we de ne the soft decision value for the ith observation (ith band)
as the log-likelihood ratio

λi � log

„
P (Ωi|y)

P (Ω̄i|y)

«
= log

 P
k:i∈Sk

P (y|Hk)P (Hk)P
k:i∈S̄k

P (y|Hk)P (Hk)

!
. (2)

If there are C, say, independent cooperating sensors then we can
obtain a soft decision value λc,i for each band i from each cooper-
ating sensor c. If each sensor observes the same true hypothesis Hk

but the noise and signal random variables are independent across the
sensors, then it is optimal to add the log-likelihood ratios in (2) at
the fusion center. (This also assumes that the soft decision values
are transmitted error-free to the fusion center.) Hard decisions on
whether a signal is present in the ith observation or not, are then
taken at the fusion center based on

Λi �
CX

c=1

λc,i

signal in band i

≷
no signal in band i

μ, (3)

where μ is a detection threshold.
As a benchmark for comparison, we give the optimal detector

when ρ and σ are known. The observations yi will then be mutually
independent and the 2M composite hypothesis test decouples to M
independent binary hypothesis tests, one for each i.

Equation (2) becomes

λi = log

0B@
1q

2π(σ2+ρ2)
exp(− 1

2(σ2+ρ2)
|yi|2) · (1 − p)

1√
2πσ

exp(− 1
2σ2 |yi|2) · p

1CA =

|yi|2 ρ2

2σ2 (σ2 + ρ2)
+

1

2
log

„
σ2

σ2 + ρ2

«
+ log

„
1 − p

p

«
,

(4)

which is then used in (3) to take decisions.

4. DETECTOR FOR UNKNOWN ρ, σ

Next we consider the case where the ρ and σ are unknown. We
propose two ways of dealing with the fact that these variances are
unknown: estimation and marginalization.

4.1. Estimation of ρ, σ using prior knowledge

Suppose that we know, a priori, that m of the M observations con-
tain only noise. Then, we can use this information to estimate the
noise variance σ2 from the m smallest observations:

cσ2 =
1

m

X
m smallest

|yk|2. (5)

Furthermore, suppose that we know that s of the M observations
contain signal plus noise. In a similar manner, we could then esti-
mate the signal-plus-noise variance σ2 + ρ2 from the s largest ob-
servations:

̂σ2 + ρ2 =
1

s

X
s largest

|yk|2. (6)

If we know the a priori probability of nding a signal in an ob-
servation, 1 − p, then the number of observations that contain only
noise is binomially distributed with mean pM . A natural choice is
then to use the m = pM smallest observations to computecσ2. Sim-
ilarly, we can use the s = (1−p)M largest observations to compute
̂σ2 + ρ2.

When both ρ and σ are estimated and we treat them as given,

by inserting cσ2, ̂σ2 + ρ2 into (2)), the problem decouples just as
when the variances are known. Hence, the optimal test for estimated

variances consists of using (4) with cσ2, ̂σ2 + ρ2 inserted in lieu of
σ2, σ2 + ρ2.

4.2. Elimination of σ via marginalization

The estimation approach of Section 4.1 may be undesirable for sev-
eral reasons. For example, one may not accurately know p. An
alternative is then to postulate a prior for σ and eliminate σ from (2)
by marginalization. We will use a Gamma distribution as prior for
γ � 1/σ2. More precisely, we take γ ∼ Gamma(c, θ), so that

P (γ) = γc−1 exp(−γ/θ)

θcΓ(c)
.

The motivation for assuming the Gamma distribution is that when
cθ = 1 and c → 0, it becomes non-informative and scaling invariant
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[8]. This means that in the limit of c → 0, log (γ) has a at dis-
tribution. Another bene t is that the marginalization with respect to
σ can be computed in closed form. To proceed, assume that σ2 and
σ2 + ρ2 are independent, and let β � 1/

`
σ2 + ρ2

´
. Then

P (y|Hi, ρ) =

Z ∞

0

P (y|Hi, γ, ρ)P (γ)dγ =Z ∞

0

Y
k∈S̄i

r
γ

2π
exp(−1

2
γ |yk|2) ·

Y
l∈Si

r
β

2π
exp(−1

2
β |yl|2)×

γc−1 exp(−γ/θ)

θcΓ(c)
dγ =

Γ(c + |S̄i|/2)
(2π)|S̄i|/2 θcΓ(c)

“
1
2

P
k∈S̄i

|yk|2 + 1
θ

”c+|S̄i|/2
×

Y
l∈Si

r
β

2π
exp(−1

2
β |yl|2),

where |S̄i| denotes the number of elements of the set S̄i. For cθ = 1
and c � 1, we have

Γ(c + |S̄i|/2)
(2π)|S̄i|/2 θcΓ(c)

“
1
2

P
k∈S̄i

|yk|2 + 1
θ

”c+|S̄i|/2
∝

1“P
k∈S̄i

|yk|2
”|S̄i|/2

.

The dependence on
`
σ2 + ρ2

´
= 1/β still remains. This variance

can be estimated for example by using the scheme described in Sec-
tion 4.1.

We stress that with σ eliminated by marginalization, yi become
correlated, even if they were independent conditioned on σ. Hence
the detection problem does not decouple, and we must compute (1).
This involves a summation of O(2M ) terms. In what follows we
propose a way of dealing with this.

5. DETECTOR APPROXIMATIONS

Generally the optimal detector consists of computing (2), which con-
tains 2M terms. This must be done for each of the M observations.
For large M this computation will be very burdensome. Only if σ, ρ
are known, or considered known (by previous estimation), so that
yi become independent, (2) simpli es into (4). Hence, we have to
approximate the sum in (2).

To approximate (2) we propose to use an algorithm presented in
[7]. The idea is, that instead of considering all possible hypotheses
{0, ..., 2M − 1}, we only consider a subset H of them for which
P (Hk|y) is signi cant. We also have to normalize P (Hk|y) for all
k ∈ H so that they sum up to one. The probability of the event Ωi,
that a signal is present in observation i, is thus approximated by

P (Ωi|y) ≈ 1P
m∈H P (y|Hm)P (Hm)

X
k∈H:i∈Sk

P (y|Hk)P (Hk),

That is, we sum over all hypotheses in H which are likely to contain
a signal in the ith observation. This yields the following equivalent

soft decision value

λi = log

 P
k∈H:i∈Sk

P (y|Hk)P (Hk)P
k∈H:i∈S̄k

P (y|Hk)P (Hk)

!
. (7)

The set H of indices k for which P (Hk|y) is signi cant is cho-
sen as follows [7]:

1. Start with a set B = {1, 2, · · · , M} and a hypothesis Hi (H0

or H2m−1 are natural choices).

2. Compute the contribution to (7), P (Hi|y).

3. Evaluate P (Hk|y) for all Hk which can be obtained from Hi

by changing the state of one observation yj , j ∈ B. That is,
if yj = xj + nj in Hi, then yj = nj in Hk and vice versa.
Choose the j which yields the largest P (Hk|y). Set i := k
and remove j from B.

4. If B = ∅ (this will happen after M iterations), compute the
contribution of the last Hi to (7) and then terminate. Other-
wise, go to Step 2.

This algorithm will change the state of each observation once, and
choose the largest term from each level. The sums of (7) will nally
contain M + 1 terms instead of 2M .

6. NUMERICAL RESULTS

We show some numerical results for the cooperative spectrum sens-
ing application. We considered 5 cooperating sensors that scan
M = 100 bands. All results are obtained by Monte-Carlo simu-
lation in a standard manner, and performance is given as the proba-
bility PMD of a missed detection of Ωi as function of probability of
a false alarm PF A. In all simulations the true parameter values were
σ2 = 1 for the noise variance, ρ2 = 36 for the signal variance, and
p = 0.5 for the probability of a signal presence in a given band.

Example 1: Comparison of Detectors (Figure 1). We rst
compare the following schemes:

(i) Optimal detection, known variances: (2)–(3), using true σ, ρ.

(ii) Optimal detection, estimated variances: (2)–(3) and (5)–(6)

(iii) Approximation algorithm, known variances: algorithm of
Section 5, using true σ, ρ.

(iv) Approximation algorithm, σ2 by marginalization, σ2 +ρ2 by
estimation (see Section 4.1)

Throughout, we use the true value of p in (2). Figure 1 shows the
results. We observe that the scheme with estimated variances (ii) per-
forms better than the scheme (iv) with marginalized noise variance.
One reason for this is that the detector based on estimation of σ uses
more a priori information (for example, p is used explicitly in the
estimation). In addition, the marginalization-based scheme uses the
approximate algorithm of Section 5, whereas with estimated noise
variance we can use (4).

Example 2: Sensitivity to errors in p (Figure 2). So far we
have assumed that perfect knowledge of p was available. In this ex-
ample we will examine how performance degrades when the a priori
knowledge of p is imperfect. Figure 2 shows the result. In all sim-
ulations, p = 0.5 was used to generate the data. We note that for
the estimation scheme, it seems to be better to overestimate than to
underestimate p. Underestimation yields a small decrease in perfor-
mance, whereas the performance with overestimation is almost as
good as with perfect knowledge. For the marginalization scheme,
the performance increases for large Pfa when p is underestimated.
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Fig. 1. ROC curves for the different detection schemes with cooper-
ation among 5 sensors. In this example, σ2 = 1, ρ2 = 36, p = 0.5.
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Fig. 2. ROC curves with imperfect knowledge of p. Data were gen-
erated using σ2 = 1, ρ2 = 36, and p = 0.5.

We believe the reason lies in the suboptimality of the approximation
algorithm of Section 5.

Example 3: Cooperative spectrum sensing (Figure 3). We
next illustrate the bene t of cooperation, and especially combination
of soft decisions. For this example we use the detection scheme (iv)
above (marginalized noise variance, approximate detector). Simi-
lar results can be obtained for the other schemes. We also compare
with the case where the sensors only transmit binary values (hard
decisions) for each band to the fusion center (this is equivalent to
quantizing λc,i to ±1). Figure 3 shows the results of these simula-
tions. We see the large gains of cooperation, and the gains of using
soft information.

7. CONCLUDING REMARKS

We have dealt with a fundamental problem that has applications in
many areas, multiband spectrum sensing being the most important
driving motivator for our work. The dif culty of the problem lies in
the fact that, on the one hand one would prefer a detector that makes

10
4

10
2

10
0

10
5

10
4

10
3

10
2

10
1

10
0

P
FA

P
M

D

 

 

1 sensor
5 sensors, soft
10 sensors, soft
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Fig. 3. ROC curves for different number of cooperating sensors. In
this example σ2 = 1, ρ2 = 36, p = 0.5.

no a priori assumptions. On the other hand, without any prior knowl-
edge at all the problem does not seem well de ned (at least in a pure
Bayesian framework), and we had to proceed by inserting estimated
parameter values into the formal expressions for the posterior prob-
abilities.

We modeled both signal and noise as zero-mean Gaussian vari-
ables. This is a fairly simple model, but it allowed us to expose the
fundamental dif culties with the unknown noise variance. Future
work may include extensions of the signal model, for example to
work with feature vectors instead of scalar observations.
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