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ABSTRACT

This paper presents a multi-antenna cognitive radio (CR) sys-

tem that is capable of operating concurrently with the primary

radio (PR) link. The operation of the CR system consists of

three stages: environmental learning, CR channel training and

CR data transmission. In environmental learning stage, partial

channel information between PR and CR are obtained blindly,

based on which the transmit beamforming and the receive

beamforming strategies are designed at CR to remove/reduce

the interference to and from PR, respectively. We character-

ize all the interference values analytically and study the prob-

lem of learning/training tradeoff associated with the proposed

scheme. The optimal balancing between learning and train-

ing is examined via the minimum mean square error (MSE)

of the channel estimation. It is shown that for a given total

learning/training time, there indeed exists a optimal learning

time that minimizes the MSE of the channel estimation, yet

the interference power to the PR is regulated.

Index Terms— Cognitive Radio, transmit beamforming,

receive beamforming, learning, channel training.

1. INTRODUCTION

The original idea behind cognitive radio (CR) expects the CR

user to detect the frequency bands that are not currently occu-

pied by the primary radio (PR) and to start the opportunistic

transmission on these empty bands, while the CR user must

release the bands once PR user becomes active. As a conse-

quence, spectrum sensing is recognized as the key technique

and has attracted a lot of attentions [1]- [3].

With the introducing of multiple antennas at the CR trans-

mitter (CR-Tx) [4], CR is allowed to transmit even if the PR

link is active, provided that the resultant interference power

or the so-called interference temperature at each PR terminal

is kept below certain predefined threshold. Intuitively, with

the aid of multiple antennas, CR-Tx could set a null along the

direction from CR-Tx to PR, whereas a strong beam can be

built along the direction from CR-Tx to CR receiver (CR-Rx).

In this work, we consider a more practical CR scenario,

where both CR-Tx and CR-Rx are equipped with multiple an-

tennas. This system is called multi-antenna CR system shown
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Fig. 1. System model for the multi-antenna CR system.

in Fig. 1, where there are M1 antennas at CR-Tx and M2 an-

tennas at CR-Rx. Assume that both CR terminals stay within

the boundary of Mp antennas of PR that operate in time di-

vision duplex (TDD) mode. For simplicity, we assume that

these Mp antennas purely belong to one PR terminal,1 whose

function switches between the transmitting, that occupies a

factor α of the overall time, and the receiving that occupies a

factor (1−α) of the overall time. However, we do not expect

CRs to know in which period PR is devoted to transmitting or

receiving.

Let us represent the channels from PR to CR-Tx and CR-

Rx by the M1×Mp matrix G1, and the M2×Mp matrix G2,

respectively. The channel from CR-Tx to CR-Rx is denoted

by the M2 × M1 matrix H. Since CRs operate in the same

frequency at PR, the reverse channels from CR-Tx to PR is

denoted GT
1 . Although more general scenario when CR-Tx

and CR-Rx operate under the TDD mode can be considered,

here, we will only present the main idea from the one way

transmission. Furthermore, we require more antennas at CRs,

i.e., M1 > Mp and M2 > Mp which is a reasonable cost

for CRs to achieve the concurrent transmission with PR. It is

assumed that PR are oblivious to the existence of the CR link.

The operation of the multi-antenna CR system consists of

three stages: environmental learning, CR channel training and

CR data transmission. In environmental learning stage, partial

channel information between PR and CR are obtained blindly,

based on which the transmit beamforming and the receive

1Discussions considering PR transceiver pairs can be found in [5].
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beamforming strategies are designed at CR to remove/reduce

the interference to and from PR, respectively, for the period

of CR channel training and data transmission.

2. INITIALIZING THE SYSTEM

Suppose CR is going to spend N symbol periods during the

initialization, which is divided into Nl symbol periods for

learning the channels from PR to CRs and Nt = N − Nl

symbol periods for training the channel from CR-Tx to CR-

Rx.

2.1. Environmental Learning

Considering that PR switches between transmitting and re-

ceiving, the signals sent from PR can be expressed as

sp(n) =
{

s̃p(ñ) if PR transmits

0 otherwise,
n = 1 . . . , Nl, (1)

where ñ is another set of index and s̃p(ñ) are the indepen-

dent and identically distributed (i.i.d.) random signals with

covariance matrix σ2
sI. Assuming that the learning period is

sufficiently long, which is reasonable in order to achieve the

reliable learning, there is Rp = E[sp(n)sH
p (n)] = ασ2

sI.

The signals received at CR-Tx and CR-Rx are

yj(n) = Gjsp(n) + zj(n), n = 1, . . . , Nl, (2)

for j = 1, 2, where zj(n) represents the complex i.i.d. Gaus-

sian noise, each entry having the variance σ2
nj .

The covariance matrices of the received signals are

Rj = E[yj(n)yH
j (n)] = ασ2

sGjGH
j︸ ︷︷ ︸

Qj

+σ2
njI. (3)

The eigen-decomposition (EVD) of Rj can be expressed as

Rj = VjΛjVH
j + σ2

njUjUH
j , (4)

where Vj is the Mj ×Mp matrix that spans the same space as

Gj , while Uj is the Mj × (Mj − Mp) matrix that spans the

orthogonal space of Gj . Correspondingly, Λj is the diagonal

matrix that contains largest Mp eigenvalues of Rj .

If no additional training symbols are sent from PR to

CRs, one can only obtain the subspace information of Gj .

Nonetheless, knowing Vj and Uj is sufficient to help design

the CR systems. If we restrict CR-Tx to transmit only through

the space spanned by U∗
1 and CR-Rx to receive only through

the space spanned by U2, then the interference to and from

PR can be completely removed during CR transmission since

UH
j Gj = 0. This scheme is called cognitive beamforming.

Practically, however, CRs can only obtain a limited sam-

ples of the received signals. Then, the sample covariance ma-

trix is constructed as

R̂j =
Nl∑

n=1

yj(n)yH
j (n). (5)

By applying EVD to R̂j , we obtain the noisy version of the

matrices Uj as Ûj . From [6], the first order perturbation in

the estimated Uj is approximated by

ΔUj = Ûj − Uj ≈ −(Qj)†ΔRUj , (6)

where † denotes the pseudo-inverse and ΔRj = R̂j − Rj .

2.2. CR Data Transmission

Before proceeding to the CR channel training, we need first

recognize the channels that are needed at CR-Rx. To pro-

tect PR, the information symbols d(n) sent from CR-Tx will

be precoded by the matrix Û∗
1, named as cognitive transmit

beamforming. The received signal at CR-Rx is then

y(n) = HÛ∗
1d(n) + G2sp(n) + z2(n). (7)

The second term on the right hand side (RHS) denotes the

interference from PR to CR, which was not handled in the ex-

isting literatures [4]. In this sense, we propose the concept of

cognitive receive beamforming, i.e., CR-Rx will process the

received signals by pre-multiplication with ÛH
2 . The received

signal then becomes

ỹ(n) = Fd(n) + ΔUH
2 G2sp(n) + z̃2(n), (8)

where F = ÛH
2 HÛ∗

1 and z̃2(n) = ÛH
2 z2(n). The residue

interference ΔUH
2 G2sp(n) goes to zero if the estimated Û2

becomes perfect. Another advantage of applying both trans-

mit and receive beamforming appears when CRs operate un-

der TDD mode, where one can easily verify that the reverse

channel from CR-Rx to CR-Tx becomes FT , which main-

tains the reciprocity of the TDD transmission and will lessen

the burden of feeding back channels from both direction.

Therefore, the task of channel estimation should focus on

estimating F considering both the residue interference and the

equivalent noise.

2.3. CR Channel Estimation

Suppose the training sequence from CR-Tx contains t(n),
n = Nl + 1, . . . , Nl + Nt, which also must be precoded by

Û1 in order to reduce the interference to PR.

Denote

Ỹ = [ỹ(Nl + 1), ỹ(Nl + 2), . . . , ỹ(Nl + Nt)]
T = [t(Nl + 1), t(Nl + 2), . . . ,y(Nl + Nt)]
Sp = [sp(Nl + 1), sp(Nl + 2), . . . , sp(Nl + Nt)]

Z̃2 = [z̃2(Nl + 1), z̃2(Nl + 2), . . . , z̃2(Nl + Nt)].

In this work we do not assume any channel statistics at CR be-

fore the system initialization,2 so the least square (LS) chan-

nel estimation of F is

F̂ = ỸT† = F + (ΔUH
2 G2Sp + Z̃2)T†. (9)

2If channel statistics are known, we can use the linear minimum mean

square error (LMMSE) channel estimator.
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It can be calculated that

E[SH
p GH

2 ΔU2ΔUH
2 G2Sp]

(a)
=

σ2
n2(M2 − Mp)

Nl
E[SH

p GH
2 Q†

2R2Q
†
2G2Sp]

=
σ2

n2(M2 − Mp)ασ2
s

Nl

×
(
tr(GH

2 Q†
2G2) + σ2

n2tr(G
H
2 Q†

2Q
†
2G2)

)

=
(M2 − Mp)σ2

n2β2

Nl
I, (10)

where “(a)” is derived by using the property [6]

E[ΔRAΔR] =
1
Nl

tr(RA)R

for any matrix A, and β2 is defined as Mp + σ2
n2tr(Q

†
2). Al-

though the exact value of Q2 is not known to CR-Rx, which

brings some trouble when identifying the system parameters,

we may replace Q2 by its maximum likelihood (ML) estimate

Q̂2 that can be obtained according to the algorithms in [5].

Following the standard approach [7], the channel estima-

tion targets to minimize the mean square error (MSE):

J � E[tr((F̂ − F)H(F̂ − F))]

= (M2 − Mp)σ2
n2(

β2

Nl
+ 1)tr((TTH)−1). (11)

Therefore, β2 is the only scalar that needs to be informed to

CR-Tx, which can be achieved via a very lower rate feedback

channel.

Due to the non-perfect environmental learning, the residue

interference GT
1 ΔU∗

1t(n) is non-zero at PR. The interference

at PR is normally characterized by the interference tempera-
ture defined as:

I(n) = E[‖GT
1 Û∗

1t(n)‖2] =
‖t(n)‖2σ2

n1β1

ασ2
sNl

, (12)

where similar derivation steps as in (10) are adopted and β1

is defined as Mp + σ2
n1tr(Q

†
1).

In fact, there is no way to restrict the instant interference

I(n) at each time slot n since Û1 itself contains the random-

ness. Therefore, we only need to deal with the average inter-

ference during the training, defined as

I =
1
Nt

Nl+Nt∑
n=Nl+1

I(n) =
σ2

n1β1tr(TTH)
ασ2

sNlNt
. (13)

Suppose the average interference temperature that can be

tolerated at PR is ζ. Then, the following constraint should be

satisfied during the training:

tr(TTH) ≤ ζασ2
sNlNt

σ2
n1β1

. (14)

Note that, the single scalar ζασ2
s should be a standard param-

eter that can be obtained from PR.

3. LEARNING/TRAINING TRADEOFF

At a first glance, larger value of Nl is desirable from the view-

point of environmental learning at CRs. On the other side,

larger value of Nt is preferable for channel estimation by as-

suming the average power of CR-Tx is Pa. Even if the total

power constraint Pt is applied, one cannot expect Nt to be

small; otherwise the average interference I in (13) will ex-

ceed the threshold. Note that a similar tradeoff has also been

studied in [3] between spectrum sensing and data transmis-

sion for single antenna CR system. However here, we pro-

pose the tradeoff between the environmental learning and the

channel training in a multi-antenna CR system.

3.1. Average Power Constraint

In this case, the maximum power that CR-Tx can spend dur-

ing training is NtPa. The optimization is derived as

min
T,Nl,Nt

(
β2

Nl
+ 1)tr((TTH)−1) (15)

s.t. tr(TTH) ≤ min
{

ζασ2
sNlNt

σ2
n1β1

, NtPa

}
,

Nl + Nt = N, Nt ≥ (M1 − Mp),

where the last constraint is required to successfully execute

the channel estimation. It can be easily known that the opti-

mal TTH is a scale of identity matrix regardless of the pa-

rameters Nl, Nt. The optimization is decoupled into the fol-

lowing two cases:

1): When Pa ≥ ζασ2
sNl

σ2
n1β1

: TTH = ζασ2
sNlNt

σ2
n1β1(M1−Mp)

I and

Nl should be found from

min
Nl

f1(Nl) =
1

Nl(N − Nl)
(
β2

Nl
+ 1) (16)

s.t. Nl ≤ N − (M1 − Mp).

The solution can be directly found by checking all the roots of

ḟ(Nl) and the boundary point Nl = N − (M1 −Mp), whose

explicit expression is omitted due to the lack of space.

2): When Pa <
ζασ2

sNl

σ2
n1β1

: TTH = NtPa

(M1−Mp)I and Nl

should be found from

min
Nl

f2(Nl) =
1

(N − Nl)
(
β2

Nl
+ 1) (17)

s.t. Nl ≤ N − (M1 − Mp).

The optimal solution can be found similarly as in (16).

3.2. Total Power Constraint

In this case, we assume that the total power reserved for train-

ing is Pt. The optimization problem is the same as (15) except

that the first constraint in (15) is replaced by tr(TTH) ≤
min

{
ζασ2

sNlNt

σ2
n1β1

, Pt

}
. The related discussion is similar to that

in Section 3.1 and is omitted for brevity.
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Fig. 2. Inverse of normalized interference temperature versus

environmental learning time.

4. SIMULATIONS

We consider a PR terminal with Mp = 2 antennas trans-

mitting with probability α = 0.5, and a CR system with

M1 = M2 = 4 antennas. The total initialization time as-

signed for CR is N = 1000 and we fix the average transmit

power of CR-Tx as 20 dB.

In the first example, we numerically examine the theoreti-

cal expression of the interference temperature (13) for σ2
s = 0

dB and σ2
s = 20 dB, respectively. The ML estimate Q̂j , j =

1, 2 are used to derive βj . The figure of merit is the inverse of

the normalized interference temperature (INIT) 1/(σ2
sI). As

shown in Fig. 2, the numerical and theoretical results match

each other quite well. The higher σ2
s yields higher INIT be-

cause it has a smaller β2.

In Fig. 3, we provide the numerical results of the inverse

channel estimation MSE 1/J versus Nl for σ2
s = 0 dB and

σ2
s = 20 dB, respectively. For simplicity, the threshold ζ

is normalized according to ζασ2
s = 1 for different σ2

s . The

analytical performance curve is also displayed in the same

figure. Clearly, analytical results match the numerical ones,

which means that the solution Nl to (15) can well guide the

optimality of the practical initialization.

5. CONCLUSIONS

In this work, we present a new CR scheme when both CR

terminals are equipped with multiple antennas. With the help

of the environmental learning, we design the transmit beam-

forming and receive beamforming that could reduce the inter-

ference to and from PR during the CR training and transmis-

sion. We found that there is a tradeoff between environmental

learning and channel training if the overall initialization time

is fixed. Finally, numerical examples are provided to corrob-

orate the proposed studies.
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