978-1-4244-2354-5/09/$25.00 ©2009 IEEE

MULTIPAS: JAVA, C++ AND C# TO OCTAVE BRIDGES

Begoria Garcia, Amaia Méndez, Ibon Ruiz, Javier Vicente
mbgarcia(@eside.deusto.es, amendez@eside.deusto.es, ibruizi@eside.deusto.es, jvicente(@eside.deusto.es

ESIDE, University of Deusto. Bilbao. Spain

ABSTRACT

This proposal introduces the APIs developed by PAS
research group from the University of Deusto (UD) to signal
processing learners three gateways between the main
programming languages (Java, C++ and C#) and “Octave”
mathematical software. These APIS enable the use of
“Octave” variables and functions through a JAVA- C++- C#
program and makes it possible to not only develop signal
processing applications quickly by implementing the
application's graphic interfaces but also to carry out the
scientific calculation in “Octave”. These gateways are
developed with the shape of API, and have been made
available to students doing degrees in Electronics and
Telecommunications Engineering, so as to assist them in
their lab training in signal processing, as well as for the
drafting of their final projects. . They are very useful to
research developments as well, not to rewrite existing code.
Finally, it is important to stress the free-software nature of
the developed gateways: as no license is necessary, student
access to this program of scientific calculus is easier.

Index Terms— Engineering Education, API, C++, C#,
Java, Octave

1. INTRODUCTION

The development of the “joPAS — coPAS - monoPAS”
programming APIs arose from the PAS research group's
need to develop prototypes of the algorithms used with a
user's interface in biomedical signal processing research
area. Several of our algorithms were developed in “Octave”
language, which, despite being ideal for signal processing
algorithms, lacks a user interface. Therefore, so as to
program a demo application of the work carried out by the
team, we saw it necessary to re-implement the code in
another programming language that enables the
programming of graphic interfaces. This meant that the team
would lose out on research performance in order to devote
more time to less productive tasks. Thus the need for a tool
allowing the reuse of “Octave” developed algorithms as well
as providing the possibility of user interfaces.

2313

Once the APIs had been developed, their great potential
had not only for research work and application development,
but also for the sphere of education, due to its user
friendliness.

At present, students of both electronic and
telecommunications engineering (in University of Deusto)
have plentiful knowledge of digital signal processing, as it is
one of the fundamental pillars of their training. During their
degree or Ph.D studies they learn how to understand and
develop mathematical algorithms in order to characterize
voice behavior, image sequences or control systems.
Concretely, they use MultiPAS to implement a research
project about pathological vocal folds segmentation
algorithm and oesophageal voice improvement system.

2. OBJECTIVES

The main aim of the APIs application is to make a tool
available that can enable the rapid development of
applications with a user interface that use signal processing
algorithms implemented with other tools (Octave). This
being the main aim, a number of secondary objectives could
also be achieved:

RY

% To reduce the cost of licences for mathematical
programs, through the use of free software, such as
Octave, which specialises in digital signal
processing.

« To Motivate students developing projects using
digital signal processing techniques by avoiding
programming difficulties.

% To increase the integration of an algorithm's results
in a graphic environment of simple programming.

¢ To Favour the creativity of students when carrying

out the projects and dissertations necessary for their
university degree.

To allow communication between the most well-

known programming languages (Java, C++ and C#)

and Octave.

To publish the project at Sourceforge.net, for its

use and assessment by the scientific community.

>

.
*

>

.
*

ICASSP 2009

3. METHODS

The main technologies used in the development of the
proposed APIs are detailed below.

3.1 Octave

Octave [1][2] is a high-level language for numerical
calculation, whose syntax is compatible with Matlab, but is
developed by the free software community.

What makes Octave different from other programming
languages?

Octave is particularly oriented towards the scientific world.
Among its main differences from other programming
languages, the following stand out:

1. Native matrix operation.

2. Native operation with complex numbers.

3. Language is interpreted.

These characteristics mean that scientific algorithms can
be developed in a far shorter time than in other programming
languages. Therefore, Octave is the ideal language for the
development of digital signal processing algorithms, digital
image processing, control systems, statistics, etc.

Furthermore, there a great many toolboxes that allow
the user to avoid having to start from scratch when wishing
to deal with a particular subject matter.

3.2 C++

C++ [3] is a programming language designed by Bjarne
Stroustrup in the mid 1980s as an extension to the C
programming language.

C++ is regarded by many as being the most powerful
language, due to the fact that it allows the operator to work
at both high and low levels. However, at the same time, it is
one that bears the least number of automations (as with C,
almost everything has be done manually), which makes it
difficult to learn. The following are some of its main
characteristics:

X3

%

Programming is object oriented
Portability

Brevity

Modular programming

Speed

X3

%

e

8

X3

%

X3

%

33 C#

C# (C Sharp) [4] is the new general-use language designed
by Microsoft for its .NET platform [5]. Its syntax and
structure are very similar to that of C++. However, its
straightforwardness and high degree of productivity are
comparable to that of Visual Basic. The following are some
this language’s characteristics:

2314

X3

2

Simplicity.
Modernity.
Object-oriented.
Efficiency.

X3

%

®,
°e

X3

o

3.4 Java

Java is an object-oriented programming language developed
by James Gosling and colleagues at Sun Microsystems in the
early 1990s. The language, which was designed to be
platform independent, is a derivative of C++ with a simpler
syntax, a more robust runtime environment and simplified
memory management.

Operating on multiple platforms in heterogeneous
networks invalidates the traditional schemes of binary
distribution, release, upgrade, patch, and so on. To survive
in this jungle, the Java programming language must be
architecture neutral, portable, and dynamically adaptable.

4. DESIGN

Throughout their degree studies, engineering students (more
specifically those specializing in electronics and
telecommunications) develop a great number of algorithms
for digital signal processing in Octave/Matlab.

So as to avoid that students can reuse the codes of the
algorithms developed in instead of codifying them again,
and also to provide the resulting software with an attractive
interface, the implementation of the “joPAS”, “coPAS” and
“monoPAS” APIs was proposed.

The communication among the bridge-languages in
each case is just based in three main classes:

< “ParserOctave” class. It is the main API class; it

manages the communication with Octave. It is

responsible for loading the Octave thread and
administering their input and output through the
control of windows API functions. The streams are
redirected to input/output stream descriptors which
send the Octave instructions (“execute” function)
and get the results in the appropriate variable

(“executeAndSave” function).

s “JoPAS”, “Copas”or “Monopas” classes. In each
of these classes the Parser, defined previously, is
started and closed. Also, the Octave’s algorithm is
programmed with the according execution form,
saving the points of X and Y axis.

GUI class. This class is based on a plot. With a
button, “JoPAS”, “Copas” or “Monopas” class is
now launched. But, the real issue is to implement a
correct library (depending of the language Java,
C++ or C#), the graphic is represented, using the X
and Y axis.

>

®,
*

Plainly, the structure has been simplified in such a way
that the knowledge of these three classes is enough for these
APIs. This is one reason to reach the education objective.

As the scientific calculation is still carried out in
Octave, the APIs allow the exchange of variables between
the languages, as well as the execution of Octave commands
from C++, C or Java#. The work methodology with
“coPAS”, “monoPAS” or “joPAS” would be as it is showed
in Figure 1.

When this has been carried out, the Parser execute the
Octave’s algorithms. Usually this is a combination of several
instructions just to execute, and others instructions which
their results have to be saved. This is possible thanks to
exchange the variables between the bridge-languages. Once
the execution of the algorithm has been concluded, the
results are stored and the variables are turned back into the
language of C# (C++ or Java). Having reached this point, it
will be the compiled language that undertakes the graphic
representation of the result.

Program Algorithm in
Octave

A 4

Reduce Algorithm to
Functions

A 4

Activate Communication
with Octave

A 4
Create Graphic Interface

A 4

Execute Octave
Functions

A 4

Change Octave Variables
to C++/Ct#/Java

A 4

Carry out Graphic
Interface

Figure 1. Design methodology flow chart
4. RESULTS

The implementation of digital signal processing applications
using “joPAS”, “coPAS” and “monoPAS” is extremely
straightforward. Below, it is explained Butterworth Filter
demo programmed with the presented APIS.

2315

The first step is delimit the Octave instructions, or
sentences, for carrying out the calculate (figure 2).

N=4;

wW=0.5;
[B,A]=BUTTER(N,W);
[H,F]=freqz(B,A,512,20000);
modulodB=20*logl0(abs(H)),

Figure 2. “Octave” instructions for a filter.

This code is included in a C++, C# or Java application
with in a function which obtains the number of points, the
value of the points in the X axis and in the Y axis.
Previously to this, the parser must be initiated. In an easy
way, the code for this signal is described in the following
figures 3, 4 and 5. Graphical result can be seen in figure 6.

//Function to Execute Octave'’s instructions

void Copas::octaveAlgorithm(double** ejeX,double®*
ejeY,int* puntos){

//Executes the Octave commands using one static variable
to the ParserOctave class (p)
Copas::p->execute("N=4;\n");
Copas::p->execute("W=0.5\n");
Copas::p->execute("[B,A][=BUTTER(N,W);\n");
Copas::p->execute("[H,F]=freqz(B,A,512,20000);\n");
Copas::p->execute("modulodB=20*log10(abs(H));\n");
//Write the values at the output variables for the X axis
Copas::p->executeAndSave("ejeX=F"n", "ejeX");
while (ParserOctave::m == NULL);

double* auxX = (ParserOctave::m->getReal())[0];
*ejeX = new double[ParserOctave::puntos];

for(int i = 0; i<ParserOctave::puntos; i++)

(*ejeX)[i] = auxX[i];

//Write the values at the output variables for the Y axis
Copas::p->executeAndSave("ejeY =modulodB"n","ejeY");
while (ParserOctave::m == NULL) ;

double* auxY = (ParserOctave::m->getReal())[0];
*ejeY = new double[ParserOctave::puntos];

for(int i = 0; i<ParserOctave::puntos; i++)

(*ejeY)[i] = auxY[i];

//Write the values at the output variables for the point’s
number

*puntos = ParserOctave::puntos;}

Figure 3. “Octave” instructions for a filter using “coPAS”.

Not only the technical results have been taken into
account, but also those obtained from the students’ learning
process. In the table below, the results from a satisfaction
survey given to the students are shown. Generally speaking,
the results from a significant sampling of 35 students have
been outstanding.

Each item has been evaluated between 1 and 10 points:
9-10: Strongly agree
7-8: Agree
5-6: Neutral
3-4: Disagree
1-2: Strongly Disagree

In table 1, it can be seen that the item which obtained
the worst mark was number 3. This is because of the fact
that the students not only have to control this tool, Octave
code too. Other interesting thing that it can be seen in table 1
is that the students prefer “joPAS”, it is because the learn
Java language previously. But the average result is very
satisfactory in general terms.

which are the most appropriate programming language for
this kind of task.

By dividing the process into the separate algorithm and
visualisation parts, the applications can be designed more
quickly, the APIs being the element enabling this link to be
carried out.

QUESTION ASKED joPAS coPAS monoPAS
(To a group of 35 students)

Is the documentation on the | 9 8 8
gateway clear?

Do the gateways cover all | 9 8,5 8,5

the operations of signal

processing?

Degree of difficulty or time || 8,5 8 8,5
needed to master gateways?

Degree of difficulty or time 9,5 7 8

required to develop digital
signal processing systems in
[Java, C or .NET]?

//Executes the Octave commands using local variables
jopas.Execute("N=4;");

jopas.Execute("W=0.5");
jopas.Execute("[B,A]=BUTTER(N,W);");
jopas.Execute("[H,F]=freqz(B,A,512,20000);");
jopas.Execute("modulodB=20*log10(abs(H));");

/* XYPlots of "F" and "modulodB", the plot title is "Modulo", the
* X label is "Frecuencia (Hz)" and Y label is "Modulo (dB)".*/
this.jopasLabel2.paintLabel("F", "modulodB",
"Médulo","Frecuencia (Hz)", "Modulo (dB)");

Does the gateway design | 8,5 8 8
allow one to go deeply into
the subject content?

Do you find the gateways | 8 8 8
more motivating/easier to
use than the traditional
method?

General satisfaction 8,5 8 8

Table 1. Satisfaction poll results.

//Function to Execute Octave’s instructions

static public void octaveAlgorithm(ref double[] ejeX, ref
double[] ejeY) {

//Executes the Octave commands using one static
variable to the ParserOctave class (p)
p-execute("N=4;\n");

p-execute("W=0.5;\n");
p-execute("[B,A]=BUTTER(N,W);\n");
p.execute("[H,F]=freqz(B,A,512,20000);\n");
p.execute("modulodB=20*log10(abs(H));\n");

//Write the values at the output variables for the X axis
p-executeAndSave("ejeX=F"\n","ejeX");

while (ParserOctave.m == null);

ejeX = (double[])(ParserOctave.m.getReal())[0].Clone();
//Write the values at the output variables for the Y axis
p.executeAndSave("ejeY= modulodB "n","ejeY");

while (ParserOctave.m == null)

ejeY = (double[])(ParserOctave.m.getReal())[0].Clone();}

Figure 4. “Octave” instructions for a filter using “monoPAS”.
6. CONCLUSIONS

Finally, it is appropriate to highlight the benefits obtained
from using the APIs for the design of signal processing
applications requiring a graphic user interface. These
advantages are, on the one hand, that by means of these APIs
the implementation of the digital processing signal algorithm
can be carried out in "OCTAVE", a suitable processing
language for this task. On the other hand, it enables the
implementation of the user interface in JAVA, C++ or C#,

2316

Figure 5. “Octave” instructions for a filter using “joPAS”.

E] 000 2000 3000 4000 SOD0 6000 700D BOD0 9000 10000 10
Frecuercy ikl

< > O

Figure 6. 4™ order low-pass filter representation using “CoPAS”
7. ACKNOWLEDGEMENTS

The authors of this paper would like to thank the University
of Deusto for the support it gives to this kind of initiative
through the concession of a pedagogical innovation project
in 2007.

This research was partially carried out under grant
TEC2006-12887-C02-02 from the Ministry of Science and
Technology of Spain.

8. REFERENCES

[1] Kurt Hornik, Friedrich Leisch, Achim Zeileis, "Ten Years of
Octave Recent Developments and Plans for the Future" in Proc.
DSC 2004, Vienna, Austria, 2004.

[2] B.L. Sturm, J.D. Gibson, “Signals and Systems using Matlab:
an integrated suite of applications for exploring and teaching
media signal processing”, in Proceedings 35th Annual Conference
Frontiers in Education, FIE '05.2005

[3] B. Stroustrup, “The C++ Programming Language” Addison
Wesley, Special Edition, 2002.

[4] K. Watson. “Beginning C#”. Wrox. 2001 Press.

[5] B. Powell and R. Weeks. “C# and the .NET framework: the
C++ perspective” Indianapolis, Indiana: Sams, 2002.

