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ABSTRACT

In this paper, we design the near optimal transmission codebook for
decentralized estimation in wireless sensor networks with uniform
quantizations and digital communications over orthogonal Rayleigh
fading channels. We start from deriving the maximum likelihood es-
timator (MLE) for arbitrary transmission codebook with known and
unknown channel state information (CSI) at the fusion center (FC).
Because the MLE is not a convex problem in the system we con-
sidered, it is not trivial to obtain an analytical expression of either
its mean square error or Cramer-Rao lower bound (CRLB). By ana-
lyzing the likelihood function, we convert the optimal transmission
codebook design minimizing the CRLB to a two-stage optimization
problem, where the problem in each stages is convex. It is shown that
the estimation accuracy with our designed codebooks and MLE is
superior to that with available transmission schemes. The proposed
codebook suggests that the sensors should use orthogonal codes to
transmit different observations for unknown CSI, while the optimal
codebook for known CSI is not orthogonal.

Index Terms— Decentralized estimation, wireless sensor net-
works, codebook design

1. INTRODUCTION

Wireless sensor networks (WSNs) consist of a number of sensors
spatially deployed in a field to observe physical parameters such as
temperature, humidity. The estimation for parameters in WSNs is
usually performed decentralized, which means that there exists a fu-
sion center (FC) in the network, and the sensors transmit their locally
processed observations to FC without inter-communications [1]. The
FC will generate the final estimation with received signals.

The decentralized estimation problem has drawn much more at-
tention since wireless sensors are widely deployed. With the as-
sumption of ideal communication and binary symmetrical channels,
[2] gives the mean square error (MSE) bound of the estimation and
discusses the power scheduling problem, [3, 4] study the quantizer
design for the sensors, and [5,6] propose the estimation schemes un-
der the strict bandwidth constraint that sensors can only transmit 1
bit for each observation.

In practical WSNs, the received signals of the FC often experi-
ence fading channels [7]. Coded transmissions are usually applied to
improve the communication reliability. Differ from traditional dig-
ital communication systems, the transmission codebook is not de-
signed for binary data, but for original observations in the decentral-
ized estimation problems with WSNs. Some recent works [8—10]
have considered schemes which map the observations of the sensors
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(quantized or not) to codes or waveforms directly. Among them, [8]
gives a practical coding scheme, which uses orthogonal waveforms
to represent each quantization value in synchronous multiple-access
channels (MACs) where the signals from sensors arrive the FC si-
multaneously. [9] finds that the analog amplify-and-forward (AF)
transmission may outperform the digital systems with the traditional
separate source-channel coding scheme, especially in additive white
Gaussian noise (AWGN) MACs. [10] analyzes the AF scheme in or-
thogonal channels, and finds that although multiple sensors can offer
the diversity gain, the estimation MSE can not approach to O when
the number of sensors is unbounded. As far as authors known, the
optimal transmission schemes for both orthogonal and nonorthogo-
nal MACs are still unknown.

In this paper, we propose a method to design the near opti-
mal transmission codebooks for decentralized estimation in wire-
less sensor networks with digital communications over orthogonal
fading MACs. We consider uniform quantizer and maximum likeli-
hood estimator (MLE) which are optimal for estimating parameters
with unknown statistics. After obtained the likelihood function, we
study the codebook design to minimize the Cramer-Rao lower bound
(CRLB). Based on the geometrical interpretation of the CRLB, this
non-convex optimization problem is transformed to a two-stage opti-
mization problem, where the problems in both stages are convex and
can be solved analytically or numerically by efficient algorithms.

It is shown that the estimation accuracy using the proposed
codebooks with MLE is superior to that with available transmission
schemes, such as natural binary codes and analog AF transmission
in orthogonal fading MACs. Moreover, the proposed codebook
with unknown CSI suggests that the sensors should use orthogo-
nal codes to transmit different observations, which means that the
type-based multiple-access (TBMA) for decentralized estimation in
non-orthogonal MACs [8] is also optimal in orthogonal MACs with
unknown CSI.

2. SYSTEM MODELS

Consider a WSN which consists of NV sensors and a FC in a field to
measure a parameter  with unknown statistics, where there are no
inter-sensor communications. The sensors transmit their quantized
observations to FC over Rayleigh fading channels. Assume that ideal
orthogonal multiple-access protocols, such as TDMA and FDMA,
are applied to the sensors, i.e. the FC can separate received signals
from sensors.
The observation for the unknown parameter 6 of the i-th sensor
is
wi:6+ns,i,i:1,-~-,N, (1)
where n5; ~ N(0,02) is the independent identically distributed
(i.i.d.) Gaussian observation noise with zero mean and variance o2.
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For digital communications, sensors will quantize the observa-
tion then perform the source coding, channel coding, and modula-
tion. This can be described as mapping the quantized observations
of the sensors to a sequence of transmission symbols with length L.
We apply a function c(z)|R — C to represent the quantization,
coding and modulation. For convenience, the transmission energy
of the symbols is normalized to 1, i.e. ¢(z)"c(z) =1, Vz € R.

Function c¢(z) can be applied to represent any processing which
maps the observation to transmission symbols. We consider the uni-
form quantization since it is optimal for parameter with unknown
statistics. For an M -level uniform quantizer, define the dynamic
range of the quantizer as [— W, +W], all the possible quantized val-
ues of the observation can be written as S,,, = mA — W, where
m=0,---,M —1,and A = 2W/(M — 1) is the quantization
interval.

The observation of the sensors will be rounded to the nearest
Sm, therefore c(x) is a piecewise constant function and can be de-
scribed as,

Co, —oco < x < S+ %
c(r) =4 cm, Smf%<x§5m+% , 2)
cv—1, Su-1—5 <z <400
where ¢ = [¢m1,+ 5 Cm,n]T,m = 0,--- , M — 1is the trans-
mission symbols according to the quantized observation Sy, .
Define the transmission codebook as C; = [co, - ,Cnm—1],

and its correlation matrix as R. = C?Ct.

Based on the orthogonal channel assumption, the FC can sepa-
rate and perfectly synchronize to the received signals from sensors.
Assume that the channel is block fading, which means that the chan-
nel coefficients are invariant during the period each sensor trans-
mits one observation. After matched filtering and symbol-duration
spaced sampling, we can denote L received samples corresponding
to the L transmitted symbols as

vi = VEahic(zi) + ey, i=1,-+- | N, 3)

where y; = [yi1, -+ ,¥i,0]7, hi ~ CN(0,1) is the channel coef-
ficient, n.; ~ CA(0,0T) is Gaussian receiver thermal noise, and
&4 is the transmission power of each observation.

3. CODEBOOK DESIGN

In the sequel, we will first derive the MLE with known and unknown
CSI. Then by analyzing the likelihood function, we formulate the
optimal codebook design problem through minimizing CRLB of the
estimation.

3.1. Maximum Likelihood Estimator

Given 0, the received signals from different sensors are statistically
independent. The MLE can be obtained by maximizing the likeli-
hood function. If the CSI is known to the receiver of FC, we have,

N
6. = arg max logp(Yh,0) = arg mgaxz logp(yilhi, 0), (4)

i=1
while if the CSI is unknown to the receiver, we have

N
0, = arg max logp(Y0) = arg m;axz log p(yil0), (5)

=1

where Y = [y1,---,yn]andh = [h1,--- , hn]T.

The conditional probability density function (PDF) p(y;|hs, 0)
can be obtained by utilizing total probability theorem,

p(yilhe ) = |

—o0

+oo

p(yilhi, ©)p(x|0)dz, (6)

where p(|6) is the PDF of Gaussian distribution (8, o2), which
depends on the observation model, and p(y;|h;, z) is the PDF of
vector complex Gaussian distribution CN (v/Eghic(z),s2I) ac-
cording to the received signal model.

If CSI is unknown at the FC, p(y;|x) can be derived based on

p(yilhi, ) as,

plyil) = / p(yilhe, 2)p(hs)dhs

il | Ealyi'e(=)?
aexp( o2 +U§(£d+ag) , (7)

where o = 1/ (77 (€4 + 03)03@71)) and p(h;) is the PDF of com-
plex Gaussian distribution CA/(0, o2T).
Utilizing total probability theorem, the likelihood function with-
out CSI is then,
400

logp(Y10) = ﬁ:log (/

Ignoring all the items independent from the MLE, the MLE with
and without CSI can be respectively written as,

[e5s}

p(ynx)p(xw)dx) R

N

R +oo (I _ 9)2
0. = argm;zleog (/ exp (—T‘?)

i=1 et

p (2R )

(&)

Oc

and

N +oo ((E _ 0)2
arg mga.x;log (/ exp (_T)

— 00

Ealyi'e(z)|
exp (703(&1 +o2) dx | . (10)

The difference between two likelihood functions comes form
the difference between p(y;|hi, ) and p(y;|z), where the former
depends on the real part of yiHc(x) and the latter depends on the
magnitude of it. Substitute (3) to yi c(x), we have

yie(x) = VEhic(x:) " c(x) + ng c(x) (1n

It can be found that the cross-correlations between two trans-
mission codes, which are the elements of R., play a key role in the
likelihood functions. In the sequel, we apply a two-stage optimiza-
tion to design the optimal R... We will first find an ideal form of the
conditional PDF p(y;|h;, x) or p(y:|x) which can minimize CRLB.
Then we design R. with which the actual conditional PDF statisti-
cally approaches its ideal form.

3.2. Optimal Form of p(y;|z) and p(y;|hi, x)

Regarding the log-likelihood function as a function of ¢ defined as
L(0), the CRLB of the estimation, depending on the curvature of

L(0), is
Var[f] > (fE [828%(29)} ) - ) (12)
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If the analytical expression of (12) can be obtained, we can de-
sign the optimal codebook by minimizing it. Unfortunately, it is not
trivial to obtain the analytical expression for the decentralized esti-
mation considered. In order to construct a tractable optimization, we
fist analyze the likelihood functions.

Regarding p(y;|hi, x) or p(y:|z) as a function of x and rewrit-
ten them as f;(x), it is shown from (6) and (8) that both likelihood
functions can be written as,

L(0) = log ({p(=]0), fi(z)da)), (13)

=1

where

p(al6) = —= p (—M) (14)

ex
V2o 202
is a Gaussian function, and

“+o0o

(f(2),g(a)) = / f(@)g(z)d. (15)

— 00

It follows from (13) that the likelihood function can be viewed as
a correlation of two functions—p(x|0) and f;(x), where the former
one is deterministic given 6 and the latter depends on R... In order
to make the problem solvable, we first relax fl(x) to be a general
non-negative function, then substitute it to (12). Note that f;(z) is
not a PDF any more due to this relaxation. After that, we formulate
the optimization problem which minimizes (12) with relaxed f;(x)
to find an optimal form of f;(x), which is denoted by f*(x).

After some equivalent transformations (details will be shown in
[11]), the optimization problem constructed with relaxed f;(x) can
be derived as,

min - J(f(z))

f(z)
s.t. f(z) >0,Vx € R, (16)
where 5

(p(]0), f(x))

This is a variational problem, which can be transformed to a
linear programming and be solved by K.K.T. conditions as [11],

[ (z) = ad(z — 0), (18)

where §(x) is Dirac-d function and « is an arbitrary constant.
In the sequel we will apply a robust approximation to design R,
which makes p(y;|hi, z) or p(y;:|z) approximates f*(x).

3.3. Optimal Correlation Matrix R

For convenience, we take p(y|h;,x) as an example to develop the
codebook.

Given the ideal form of f*(x), we can formulate the following
robust norm approximation problem to design R.

min  E[[p(ylhs, ) = 7 (@)]]
st.  Re>0, (19)

where the expectation is with respect to n.; and h;, and “> 0”
means positive semi-definite.

The desired function to be approximated to, f*(x), is too ideal
for p(y:|hs:, z) which is not practical. Only if there is no obser-
vation noise, no quantization noise, and no communication error,
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p(yi|hi, z) can equal to f*(x). We relax f*(z) to f*(z) = 6(x —
xl) because z; is the optimal estimation of 6 for sensors.

For digital communications, c(x) is piecewise constant in each
interval Q.,, = [Sm — %, S + %}, which makes p(y|hi,x) also
piecewise constant with respect to . Define p = [po, - - - , par—1]"
as the values of p(y|hi, z) on all intervals, then the continuous func-
tion p(y|hs, ) can be represented by vector p.

If x; belongs to interval Q,,,, then p,,, will be a constant in-
dependent with R.. The reason is that when x € Q. c(z) will
be the same as c¢(x;) due to the quantization. Therefore, we remove
Pm,; from vector p since it will not affect the codebook design. In
other intervals, we have f*(x) = 0. Then the robust approximation
problem can be transformed into a least norm problem, which is

min B [[p|l,], (20)

where || - || is I, norm.

Assume R. = Toep(l,r1, - ,ram—1) as a Toeplitz matrix,
then we just need to optimize its first row instead of the whole ma-
trix. If /> norm is applied, (20) can be simplified as a standard semi-
definite programming (Details will be presented in [11].),

min y
s.t. R{R.} = 0
,1§§R{Tm}§+1, Ym=1,---,M—1

Al
(1 y)zm 1)

. 302 302
where A = diag(l + 7z& — R{r}, -+, 1+ = — R{rm-1}),
and

M—1

1
> . . (22)
vz 2 (1+5) - ®{r}

Problem (21) can be solved efficiently by numerical algorithms.
If we apply lo norm to (20) and utilize the Jensen inequality to sim-
plify the problem, we can obtain an analytical solution as R{R.} =
Toep(1, —ﬁ7 cee —ﬁ)(see also [11]).

Following the same approach, the optimization problem for de-
signing R.. with unknown CSI can be derived as,

M—1 1
min Z 302 30’2 «
o (32 41) (B +1) - v
s.t. R. >0
0<rrrm <1. (23)
We can find that its solution is R. = I, since its objective

function is monotone with respect to 75, 7,,. It means that the sen-
sors should assign orthogonal codes to each possible quantized ob-
servation. This orthogonal codebook was used by the type-based
multiple-access (TBMA) in non-orthogonal channels [8]. Our so-
lution implies that TBMA is optimal in orthogonal multiple-access
fading channels when the CSI is unknown to the receiver. Whether
it is optimal in general fading MACs will be studied in future works.

Obtained R., we can use algorithms such as Cholesky-like fac-
torization to find Cq, since R. is positive semi-definite. The length
of the transmission symbols obtained by this way is equal or less
than M.



4. SIMULATIONS

There are N sensors and a FC in the simulation scenarios. The ob-
servation SNR of local sensors is defined as vs = 201og, (W /o).
The communication SNR is defined as 7. = 10log,y(Ea/No),
where No/2 = o2 is the double-sided power spectrum density of
the receiver noise in the FC. Note that we define the communication
SNR based on &4, the energy consumed for transmitting one obser-
vation, for a fair comparison, because the code length of different
codebooks is not identical.

The MSEs of the best linear unbiased estimator (BLUE) without
quantization noise and communication error and the Quasi-BLUE
with quantization noise [2] are also provided through simulations,
which can be regarded as a performance lower bound.

Rayleigh Channel, MLE, v =20dB, M=16, N=10

—2— Analog Fwd
—#— Normal Codebook
& |, Codebook

_&— | Codebook

— — — Q-BLUE Bound
—— BLUE Bound

MSE

Fig. 1. MSE of the MLE with CSI

Rayleigh Channel, No CSI, 1,=20dB, M=16, N=10
— T T T ¥ T ey

—+— Known CSI Opt
107 —#— Normal Codebook | . |
-1 —%— Walsh Codebook
© | = — — Q-BLUE Bound
——— BLUE Bound

MSE

Fig. 2. MSE of the MLE without CSI

The codebook marked as Normal Codebook in the figures refers
to the uncoded natural binary coding, which maps M = 2% quanti-
zation values to K -bit binary codes. The codebooks designed by [»
and o norm are marked as ls Codebook and o, Codebook. As for
unknown CSI case, we apply Walsh codes to construct a codebook
which makes R. = L.

The performance of analog amplify-forward transmission [9] is
also evaluated for comparison.

Fig. 1 shows the MSEs of different transmission codebooks
when CSI is known to the receiver; while Fig. 2 depicts the MSEs
when CSI is unknown. It is shown that the codebooks we designed
can improve the estimation accuracy evidently. Note that the perfor-
mance of the MLE with natural binary coding is the worst when CSI
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is unknown. This is because the MLE without CSI depends on the
magnitude of the elements in R rather than the phase of them. As
a result, the natural binary coding introduces phase ambiguity to the
MLE, which dramatically increases MSE.

5. CONCLUSIONS

In this paper, we introduce a novel method to design the transmis-
sion codebook for the decentralized estimation in WSNs. We con-
sider digital communications and orthogonal Rayleigh fading chan-
nels. Based on the geometrical interpretation of the CRLB, we trans-
form the non-convex optimization problem to design the transmis-
sion codebook into a two-stage convex optimization problem. Sim-
ulations show that the codebook designed can improve estimation
accuracy of the decentralized estimation, compared with that using
traditional transmission schemes.

Furthermore, it indicates by the designed codebooks that the
TBMA, which uses orthogonal codebooks, is optimal in orthogonal
MAG:s if CSI is unknown to the FC. Nevertheless, if CSI is known,
orthogonal codebooks are not optimal any more.
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