
BOUNDS ON DISTRIBUTED TDOA-BASED LOCALIZATION OF OFDM SOURCES

Richard K. Martin∗

The Air Force Institute of Technology
Dept. of Elec. & Comp. Eng.

WPAFB, OH, 45433
richard.martin@afit.edu

Chunpeng Yan and H. Howard Fan

The University of Cincinnati
Dept. of Elec. & Comp. Eng.
Cincinnati, OH, 45221

yancg@ececs.uc.edu, h.fan@uc.edu

ABSTRACT

One main drawback of using Time Difference of Arrival (TDOA)
methods for source localization and navigation is that they require
centralization of multiple copies of a signal. This paper considers
blindly estimating the location of a Cyclic Prefix (CP) in an Orthog-
onal Frequency Division Multiplexing (OFDM) signal, enabling dis-
tributed TDOA computation up to an integer ambiguity. This ambi-
guity can be resolved using integer least-squares methods, if enough
TDOAs are available. The contributions of this paper are derivation
of the Cramer-Rao Lower Bound (CRLB) on locating the CP, and
hence on the underlying source localization problem.

Index Terms— Cramer-Rao lower bound, OFDM, cyclic prefix,
time delay estimation, blind, TDOA

1. INTRODUCTION

One main drawback of using TDOA methods for source localization
and navigation is that they require centralization of multiple copies
of a signal, which wastes bandwidth and power. For OFDM sources,
the amount of required centralization of data can be greatly reduced
by comparing the temporal locations of the CPs rather than compar-
ing the entire signals [1]. This can be done blindly, without knowl-
edge of the data contained in each CP [2]. However, since CPs occur
at regular intervals, this leaves an integer ambiguity in each TDOA
(any integer times the OFDM block length). In [1], the ambigu-
ity was resolved by transmitting a small amount of data per block,
whereas in this paper, we assume that the ambiguity can be resolved
using integer least squares methods, as in [3].

Many papers discuss the CRLB of TDOA-based positioning [4].
Existing work assumes cross-correlation either between sensors [5],
[6], [7] or with a known training signal [8]. In this paper, we consider
the TDOA being estimated blindly and in a distributed fashion, by
comparing the delays of the CPs (estimated as in [2]) in pairs of re-
ceived signals. Thus, the main contribution of this paper is derivation
of the CRLB on estimating the time delay of the CP within a sym-
bol. Assuming that the integer ambiguity is appropriately resolved,
this allows derivation of a CRLB on the TDOAs, and ultimately the
CRLB for the underlying source localization problem, for the case
in which no data is centralized aside from the reception times of the
CPs.
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2. SYSTEMMODEL AND ML ESTIMATION

The model for the received signal is

y(t) =
∑

k

x[k]p(t− δ − kT ) + n(t). (1)

where δ is the time delay to be estimated, x[k] is the transmitted data
sequence, and p(t) is the pulse shape with derivative p′(t). We will
use po(t) to denote a time-normalized version of the pulse shape, i.e.
p(t) = po(t/T ), and we assume that p(t) is a raised-cosine pulse
with excess bandwidth β.

The OFDM transmitter uses an FFT size ofN and a CP length of
ν samples. The transmitter sends one block ofM = N + ν samples
of x[k] everyMT seconds. The receiver uses an oversampling factor
of q, and thus has a sampling period of Ts = T/q. The receiver
samples a total of L blocks, or LqM samples. The set Ic denotes
the set of transmitted samples of x[k] in cyclic prefixes (the first ν of
each M samples), the set Id denotes the unique N − ν samples in
the middle of each M samples, and the set Ie denotes the last ν of
eachM samples (which get copied into the CP).

The signal power and noise power are σ2
x and σ2

n per sample,
respectively, and the Signal to Noise Ratio (SNR) is σ2

x/σ2
n. The

transmitted data is assumed to be white (aside from the presence of
the CP), and the noise is assumed to be completely white over the
spectrum of interest.

In [2], a Maximum Likelihood (ML) algorithm was derived to
jointly estimate the temporal location of the CP and the Carrier Fre-
quency Offset (CFO), but no CRLB was derived. In this paper, for
simplicity, we assume there is no CFO. The ML algorithm of [2],
generalized1 to allow for oversampling by q and averaging over L
blocks, is given by

δ̂ML = arg max
−

Mq
2
≤δ<

Mq
2

{
γ(δ)− ρ

2
Φ(δ)

}
, (2)

γ(δ) =

L∑
l=1

Mql+δ+νq−1∑
k=Mql+δ

y(kTs)y
∗((k + Nq)Ts), (3)

Φ(δ) =
L∑

l=1

Mql+δ+νq−1∑
k=Mql+δ

(|y(kTs)|2 + |y((k + Nq)Ts)|2
)
, (4)

ρ =
SNR

SNR + 1
. (5)

1The ML algorithm of [2] assumed q = 1, and it is not immediately
obvious whether the generalization here is still ML when q > 1.
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In the next section, we will also consider an approximate ML algo-
rithm, given by

δ̂apx = arg max
−

Mp
2
≤δ<

Mp
2

{γ(δ)} . (6)

This is motivated by the fact that Φ(δ) is approximately constant
over δ, especially if the amount of averaging (L) is large. The ρ Φ(δ)
term also vanishes at low SNR.

3. EFFECTS OF SAMPLING

Intuitively, the CRLB should depend on the signal bandwidth 1/T ,
but not on the actual sampling rate 1/Ts, since the latter in part de-
fines the estimation method. However, the performance of a given
estimator will depend on the oversampling factor. For example, the
ML algorithm of [2] does not interpolate between samples, hence its
variance is at least that of a uniform random variable distributed over
[−Ts/2, Ts/2], which is T 2

s /12. This “sample resolution” bounds
the Root Mean Squared Error (RMSE), causing a departure from the
CRLB at high SNR values.

In order for the CRLB to be analytically tractable in a short
paper, the derivation in the next section assumes sampling at the
Nyquist rate, i.e. q = 1, which makes adjacent samples uncorre-
lated. Prior work on time delay estimation [5], [6] avoids this as-
sumption by working in the frequency domain. However, it does not
make sense to discuss the power spectra of OFDM systems, since the
CP makes OFDM non-stationary (in fact, cyclo-stationary with pe-
riod MT ). However, similar work on image registration [9] makes
an assumption analogous to ours, i.e. that the observed images are
sampled at the Nyquist rate or greater.

4. CRLB DERIVATION

First, we consider the general case, then we derive the bound on es-
timators that only use the autocorrelation function of (3) to locate
the CP. The latter derivation is cleaner but only applies to auto-
correlation based estimators, e.g. (6). Real data is assumed for sim-
plicity, and the SNR is assumed known.

4.1. General CRLB

In the general approach, the unknowns are the time delay δ and the
LN nuisance parameters {x[k]}. Let x consist of L blocks of N
samples of x[k] each, containing no repetition, i.e. omitting the CP
samples. The log-likelihood of the received vector y is

y = [y(T ), · · · , y(LMT )]T (7)

ln(f(y|x, δ))︸ ︷︷ ︸
L

= const. − 1

2σ2
n

∑
m

[y(mT )− E {y(mT )}]2 ,

(8)

E {y(mT )} =
∑

k

x[k]p(mT − δ − kT ). (9)

The Fisher Information Matrix (FIM) has a block structure,

J =

[
A BT

B C

]
, (10)

where A is 1 × 1, B is LN × 1, and C is LN × LN . In each
dimension, the first element of J corresponds to δ, and then each

successive set of N elements corresponds to a block of (unprefixed)
independent data samples x[k].

The (scalar) submatrixA, evaluated at δ = 0 for simplicity, is

−E
{

∂2L
∂δ2

}
=

1

σ2
n

∑
m

(
∂E {y(mT )}

∂δ

)2

(11)

=
1

σ2
n

∑
m

z2[m], (12)

z[m]
�
=
∑

k

x[k]p′((m− k)T ). (13)

Again for δ = 0, B and C are given element-wise by

−E
{

∂2L
∂δ ∂x[k0]

}
=

1

σ2
n

∑
m

∂E {y(mT )}
∂δ

∂E {y(mT )}
∂x[k0]

(14)

=
−1

σ2
n

∑
m

z[m]
∂E {y(mTs)}

∂x[k0]
(15)

−E
{

∂2L
∂x[k0] ∂x[m0]

}
=

1

σ2
n

∑
m

∂E {y(mT )}
∂x[k0]

∂E {y(mT )}
∂x[j0]

,

(16)

Due to the repetition induced by the CP,

∂E {y(mT )}
∂x[k0]

=

⎧⎨
⎩

p((m− k0)T ), k0 ∈ Id

p((m− (k0 −N))T )
+p((m− k0)T ), k0 ∈ Ie

(17)

For a Nyquist pulse shape, (17) becomes

∂E {y(mT )}
∂x[k0]

=

{
δK(m, k0), k0 ∈ Id

δK(m, k0 −N) + δK(m, k0), k0 ∈ Ie

(18)
where δK(·) is the Kronecker delta function. Thus,

A =
1

σ2
n

∑
m

z2[m] (19)

B[k0] =
1

σ2
n

·
{ −z[k0], k0 ∈ Id

−z[k0 −N ]− z[k0], k0 ∈ Ie
(20)

C =
1

σ2
n

[
IN−ν 0

0 2Iν

]
⊗ IL, (21)

where ⊗ is the Kronecker product. (Note that k0 only indexes the
last N of each N + ν samples of x.) Using Schur complements to
perform the matrix inversion in block fashion, the top left element of
the CRLB is given by

V AR[δ̂] ≥
[
A−B

T
C
−1

B
]−1

(22)

= σ2
n

⎡
⎣∑

m

z2[m]−
∑

m∈Id

z2[m]− 1

2

∑
m∈Ie

(z[m] + z[m−N ])2

⎤
⎦−1

(23)

In (23), there are three summations over the indexm. The first sum-
mation includes allm, including the CP set, Ic; the data set, Id; and
the data in the ends of blocks, Ie. The second summation only in-
cludes the data in the middle of each block, and the third summation
only includes the data in the ends of blocks.
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Noting that “m ∈ Ie” is equivalent to “(m−N) ∈ Ic”,

V AR[δ̂] ≥ 2σ2
n

[ ∑
m∈Ie

(z[m]− z[m−N ])2
]−1

(24)

= 2σ2
nT 2

[ ∑
m∈Ie

(∑
k

(x[k]− x[k −N ])p′o(m− k)

)2]−1

.

(25)

Observe that the terms when k ∈ Ie are zero. Moreover, we al-
ways have m ∈ Ie, and the pulse shape factor is nearly zero except
when |m− k| is small. Thus, the terms that contribute most to the
summation are the boundary terms, i.e. when k is just outside of Ie.

Equation (25) is the CRLB, and cannot be simplified further
without approximations. However, in order to gain intuition, con-
sider the case of large L, which enables the approximation

∑
m∈Ie

(·) = L · 1

L

L∑
l=1

∑
m∈Il

e

(·) ≈ L · E
⎧⎨
⎩ ∑

m∈I1
e

(·)
⎫⎬
⎭ , (26)

where the set Il
e is the data in block l of Ie. Then, given that the

data x[k] is uncorrelated (aside from the repetition in the CP),

V AR[δ̂] � 2σ2
nT 2

⎡
⎣L

∑
m∈I1

e

∑
k �∈Ie

(2σ2
x)
(
p′o(m− k)

)2⎤⎦−1

=
T 2

L SNR

⎡
⎣ ∑

m∈I1
e

∑
k �∈Ie

(
p′o(m− k)

)2⎤⎦−1

=
T 2

L SNR

[
2

∞∑
d=1

d
(
p′o(d)

)2]−1

︸ ︷︷ ︸
η

. (27)

For raised cosine pulse shapes with excess bandwidths β of 0,
0.25, and 0.5, the factor η is 0.32, 0.41, and 0.74, respectively.

4.2. Bound for autocorrelation-based methods

This section derives the CRLB for estimators that only use the auto-
correlation data γ(t), as in (6). Since γ(t) are the observations, the
only unknown is the time delay δ. The expected value of γ(t) is

Γ(t)
�
= E {γ(t)} = L σ2

x Λ(t− δ), (28)

where Λ(t) is a triangular pulse spanning −ν ≤ t ≤ ν with a peak
height of ν. It can be shown that the variance of γ(t) is

V AR {γ(t)} = Lν
(
σ2

x + σ2
n

)2
, (29)

and that the auto-covariance of γ(t1) and γ(t2) is zero for all pairs
of non-equal time instants.

Let γ = [γ(−M/2), · · · , γ(M/2 − 1)]. The log-likelihood
function of this vector given the delay δ is

ln(f(γ|δ))︸ ︷︷ ︸
L

= const. −
∑

t [γ(t)− Γ(t)]2

2Lν (σ2
x + σ2

n)2
(30)

The Fisher information is given by

J = −E
{

∂2L
∂δ2

}
=

∑
t [Γ′(t)]

2

Lν (σ2
x + σ2

n)2
. (31)

Given the triangular shape of Γ(t), its derivative has a magnitude of
Lσ2

x/T for a range of 2ν samples, and is zero otherwise. Thus,

J =
(2ν)

(
Lσ2

x/T
)2

Lν (σ2
x + σ2

n)2
. (32)

Inverting and simplifying,

V AR[δ̂corr] ≥
(
1 + SNR−1

)2
T 2

2L
. (33)

The limiting cases are

V AR[δ̂corr] �

{
T2

2L
, high SNR
T2

2L SNR2 , low SNR
. (34)

Interestingly (and counter-intuitively), both (27) and (33) are in-
dependent of the fraction of each block consisting of the CP, i.e. the
fraction ν/M . Thus, a short CP is as good as a long CP for purposes
of blind delay estimation in the absence of multipath.

4.3. CRLB on source localization

Assume K synchronized TDOA receivers work together to locate
one OFDM source. Given the estimates of the CP locations and a
suitable method for resolving the integer ambiguities [3], the TDOA
between each pair of receivers can be obtained by subtracting the
two estimated delays. This doubles the variance and the CRLB, and
induces some covariance between TDOA estimates. Thus, the co-
variance matrix of efficient TDOA estimates and its inverse are

Q =
η T 2

L SNR

[
I + 11

T
]

(35)

Q
−1 =

(
η T 2

L SNR

)−1 [
I− 1

K
11

T

]
(36)

where 1 is a (K − 1) × 1 vector of ones.
From [7], the CRLB on the position estimate can be computed

given the covariance matrix of a TDOA estimator, as

CRLB (xtx, ytx) = c2
(
G

T
Q
−1

G
)−1

(37)

=
η c2 T 2

L SNR

(
G

T

[
I− 1

K
11

T

]
G

)−1

(38)

where G is a (K − 1) × 2 matrix that depends entirely on the
geometries of the transmitter and receivers, with the ith row (for
i = 2, 3, · · · , K) given by

G(row i) =

[
x1 − xtx

r1
− xi − xtx

ri

,
y1 − ytx

r1
− yi − ytx

ri

]
(39)

where (xtx, ytx) and (xi, yi) are the locations of the source and K
receivers, and ri is the distance from the source to receiver i.

5. SIMULATIONS

The simulation parameters in this section are comparable to an IEEE
802.11a system: the FFT size is N = 64, the CP length is ν = 16,
the block size isM = N +ν = 80, and the Nyquist sampling period
is T = 50 ns. The number of blocks is L = 10 (yielding a 40 μs
observation time). The raised cosine pulse shape uses β = 0.
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Fig. 1. Comparison of the CRLBs of (27) and (33) to the RMSEs of
(2) and (6). The upper bound corresponds to a uniform distribution
across a span ofMT seconds, and “sample res” is the floor discussed
in Section 3. There is no oversampling (q = 1).
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Fig. 2. Comparison of the CRLB of (27) to the RMSE of (2) for
various oversampling factors q. The CRLB was derived assuming
q = 1, but appears to hold for all q.

Fig. 1 shows the square roots of the CRLBs from (27) and (33),
and the RMSEs of (2) and (6), using 1500 trials. The RMSE floor
is as discussed in Section 3. Fig. 2 compares the performance of the
ML estimator for various values of q to the CRLB. Although the
CRLB was derived for q = 1, it appears to hold for all q. Sampling
faster initially improves the performance of the ML estimator, but
the realm of diminishing returns is reached very quickly. Fig. 3 and
Table 1 compare the final RMSE and CRLB on position estimation,
for q = 7. Ambiguity resolution was performed by dividing the
space into 3 km × 3 km regions and bounding the integer offsets
within each region based on the sensor geometry and region size.
The best choice of integers for each region was determined using
box-constrained integer least squares [3]. The overall optimum inte-
gers were determined by selecting each region’s choice in turn, esti-
mating the position via [10], and comparing the TDOAs that would
result from that estimate to the observations.
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Fig. 3. Performance of position estimation, as in Section 4.3, for
0 dB SNR and q = 7. Each ∇ is a sensor, the ∗ is the source,
and each+ is a resolved source estimate (200 trials). The outer and
inner ellipses indicate the RMSE and the CRLB, both scaled up by 2
so that the former gives an 86% confidence interval.

Table 1. Effects of varying SNR on position estimation (in meters).
SNR: -10 dB -5 dB 0 dB 5 dB 10 dB 30 dB
RMSE 5790 11.5 3.82 2.26 1.85 1.47√
CRLB 50.7 5.07 1.67 1.01 0.81 0.66
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