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ABSTRACT

The problem of transmit beamforming for single-group multicast-
ing is considered, where the objective is to transmit common infor-
mation to a (large) number of users. The transmitter is assumed to
have accurate downlink channel state information (CSI) for all users,
and the objective is to design the beamformer weights to minimize
the total transmitted power subject to meeting the quality-of-service
(QoS) constraints of all users. This is an NP-hard problem that has
recently drawn considerable interest (e.g., in the context of UMTS-
LTE / E-MBMS). Several channel orthogonalization-based methods
are proposed to solve this problem in an approximate way. Our tech-
niques are shown to offer an improved performance-to-complexity
tradeoff as compared to the original semidefinite relaxation (SDR)
based multicasting technique.

Index Terms— Channel orthogonalization, multicasting, trans-
mit beamforming

1. INTRODUCTION

Let us consider the single-group multicasting problem where a mul-
tiple-antenna transmitter has to broadcast information to multiple
single-antenna receivers within a certain service area. The trans-
mitter is assumed to have complete knowledge of the downlink user
channel state information (CSI). Such a single-group multicasting
problem has been considered in [1], where the following particu-
lar formulation of this problem has been addressed: Find the trans-
mit beamformer weight vector that minimizes the total transmitted
power subject to multiple quality-of-service (QoS) constraints, one
for each receiver. The authors of [1] have proved that this problem
is generally non-convex and NP-hard. They have proposed an ele-
gant approach to approximately solve this problem using the semi-
definite relaxation (SDR) technique [2], [3]. However, because of
the SDR step, the approach of [1] is computationally quite demand-
ing. Therefore, the design of simpler multicasting methods is of
significant interest.

In this paper, we develop a new approach to approximately solve
the aforementioned multiple-antenna multicasting problem using
channel orthogonalization. The key idea of our approach is to or-
thogonalize the user downlink channel vectors (e.g., using the QR-
decomposition technique or any of its variants such as the Gram-
Schmidt algorithm) to satisfy the QoS constraints in a simple way.
Using channel orthogonalization in this context was previously pro-
posed in [4], but the approach of [4] demonstrates good results only
when the number of users is less than the number of transmit anten-
nas. In particular, the simulation results in [4] show that even for a
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relatively small number of users, the approach of [4] can reach the
performance of the SDR method only when rather low numbers of
randomizations are chosen in the latter technique.

In practice, the number of users is typically greater than the num-
ber of transmit antennas, and this is the case that we consider in this
paper (also note that the NP-hardness proof in [1] applies to the case
when the number of users is greater than or at least equal to the num-
ber of transmit antennas). Moreover, we propose a local search al-
gorithm that can be combined with our approach to further improve
its performance.

Several alternative techniques based on the ideas of channel or-
thogonalization and local search are formulated below. They are
demonstrated to provide a substantially improved performance-to-
complexity tradeoff as compared to the SDR technique of [1]. In
particular, our techniques can be tuned to achieve nearly the same
performance (in terms of the total transmitted power) as the SDR
method of [1] at a substantially lower computational cost, or, alter-
natively, achieve an improved performance as compared to the SDR
technique at nearly the same computational complexity.

2. PROBLEM FORMULATION

Let us consider a single-group wireless multicasting scenario where
anN -antenna transmitter broadcasts data toM single-antenna users
with frequency-flat quasi-static channels [1]. The signal-to-noise ra-
tio (SNR) of the ith user is given by

γi = |wHhi|2/σ2
i

where the N × 1 vectors w and hi are the transmit beamformer
weight vector and the downlink channel vector of the ith user, re-
spectively, σ2

i is the additive white Gaussian noise (AWGN) variance
of the ith user, and (·)H denotes the Hermitian transpose.

The problem of finding the weight vector that minimizes the to-
tal transmitted power subject to the user QoS constraints can be ex-
pressed as [1]:

min
w

‖w‖2 s.t. |wH h̃i|2 ≥ 1 for all i = 1, . . . , M (1)

where
h̃i = hi/

√
γmin,iσi

2

is the ith user’s normalized downlink channel vector and γmin,i is
the prescribed minimum SNR for the ith user.

3. SDR TECHNIQUE

The problem in (1) is a quadratically constrained quadratic program
(QCQP) with non-convex constraints [3]. It has been shown in [1]
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that this problem is NP-hard. Defining the matrices

Qi � h̃ih̃
H
i , X � wwH

and using the fact that

|wH h̃i|2 = trace{wwH h̃ih̃
H
i }

the problem in (1) can be rewritten as [1]:

min
X

trace{X} s.t. trace{XQi} ≥ 1, i = 1, . . . , M, (2)

X � 0, rank{X} = 1.

Following the SDR approach, the authors of [1] proposed to relax
the problem in (2) by dropping the rank constraint rank{X} = 1.
This results in a convex semidefinite programming (SDP) problem
which can be solved in polynomial time using available convex op-
timization tools [5].

It has been found numerically in [1] that the optimal solution of
the latter SDP problem,Xopt, generally is not rank-one. In the latter
case, to obtain the optimal weight vector fromXopt, randomization
techniques have to be used [1]. The main idea of these techniques
is to use Xopt for generating multiple candidate weight vectors and
to select the candidate vector that requires the smallest scaling to
satisfy (2). The dominant computational cost of the SDR approach
is given by O (

(M + N2)3.5
)
[1].

4. THE PROPOSED APPROACH

Since generally we have more users than transmit antennas, let us
choose a subset ofN channel vectors from {h̃i}M

i=1 to generate a set
of orthonormal vectors {qi}N

i=1. As the vectors qi (i = 1, . . . , N )
span the whole N -dimensional space, the desired weight vector w
can be represented as

w =
N∑

i=1

ciqi (3)

where c = [c1, . . . , cN ]T is the vector of complex coefficients and
(·)T denotes the transpose. From (3), it follows that

‖w‖2 = ‖c‖2. (4)

The key idea of our approach is to choose each component of w in
(3) to satisfy the QoS constraints corresponding to the chosen subset
of channel vectors with equality. The remaining M − N QoS con-
straints can be then satisfied by scaling the so-obtained vector w so
that the most violated constraint is satisfied with equality.

In Subsection 4.1, we introduce a new multicasting technique
that is based on the QR-decomposition of the channel vectors. In
Subsection 4.2, we consider a particular case of using the Gram-
Schmidt algorithm to compute the QR-decomposition. As the way
of selecting the subset of N channel vectors out of the availableM
vectors may be critical for performance, in both our techniques we
use multiple choices of channel vector subsets involved in the or-
thogonalization process.

In Subsection 4.3, a simple local search technique is proposed
that can be used in conjunction with the developed channel orthogo-
nalization based techniques to further improve their performance.

4.1. The QR-Decomposition Based Technique

For the sake of clarity, let us hereafter assume that M ≥ N (note
that the extension to the reverse case M < N is trivial). Let us
consider theN × M matrixG � [h̃1, . . . , h̃M ] whose columns are
the vectors h̃i (i = 1, . . . , M ). Let theN×N matrixH be obtained
by dropping anyM − N columns ofG and possibly reordering the
remaining N columns. Applying QR-decomposition toH, we have

H = [q1, . . . ,qN ]

⎡
⎢⎢⎢⎣

γ11 γ12 · · · γ1N

0 γ22 · · · γ2N

...
...

. . .
...

0 · · · 0 γNN

⎤
⎥⎥⎥⎦ � QR (5)

where γii > 0 for all i = 1, . . . , N .
Using (3)-(5) and keeping in (1) only theN QoS constraints that

correspond to the columns ofH, the latter problem can be rewritten
as

min
c

‖c‖2 s.t. |cHri| ≥ 1 for all i = 1, . . . , N (6)

where ri is the ith column ofR.
Although the problem (6) has the same mathematical form as

(1), an important difference between these two problems is that the
vectors ri inherit the upper-triangular structure of the matrix R.
Moreover, the number of constraints in (6) is less than in (1). These
two facts make it possible to satisfy the constraints in (6) with equal-
ities by successive computation of the coefficients ci, i = 1, . . . , N .
In particular, from the first constraint |cHr1| = 1, we have

|c1γ11| = 1

and, therefore, |c1| = 1/γ11. Note that the phase of c1 can be chosen
arbitrarily. Indeed, due to the successive nature of computing the
coefficients ci (i = 1, . . . , N ), any change of arg{c1} will only
cause a rotation of the computed weight vector and, clearly, such
a rotation will not affect the cost function. Therefore, without any
loss of generality, we set arg{c1} = 0, that is, the first coefficient is
computed as

c1 = 1/γ11. (7)
From the kth constraint |cHrk| = 1 (k = 2, . . . , N ), we have:∣∣∣∣∣

k∑
i=1

c∗i γik

∣∣∣∣∣ = 1 (8)

where (·)∗ denotes the complex conjugate. Defining

βk �
k−1∑
i=1

c∗i γik

for k = 2, . . . , K , we can rewrite (8) as

|c∗kγkk + βk| = 1. (9)

Equation (9) illustrates the kth step of our successive algorithm
to compute the vector c. In this step, all ci for i = 1, . . . , k − 1
have already been computed (that is, βk is given), and ck should
be computed from (9) so that the increase of the cost function ‖c‖2

caused by ck is minimal. Clearly, this is equivalent to choosing ck

that satisfies (9) and has the smallest absolute value.
From (9) and nonnegativity of γkk, it readily follows that such

an optimal value of ck should satisfy the following property:

arg{ck} =

{ −arg{βk}, |βk| < 1,
−arg{βk} + π, |βk| > 1.

(10)
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Note that in the case |βk| = 1, ck = 0 and, therefore, the value of
arg{ck} is immaterial.

From (10), we have that

|c∗kγkk + βk| =

{ |ck|γkk + |βk| = 1, |βk| < 1,
|βk| − |ck|γkk = 1, |βk| > 1.

(11)

From (10) and (11), it readily follows that in the kth step (k =
2, . . . , N ) of our sequential algorithm and for any |βk|, the coef-
ficient ck can be obtained as

ck =
1 − |βk|

γkk
e−j arg{βk}. (12)

Equations (7) and (12) define the proposed technique to succes-
sively compute the coefficients ck, from k = 1 to k = N . After
computing the whole coefficient vector c in this way, the associated
weight vector can be obtained from (3). The remainingM −N QoS
constraints to be satisfied are those corresponding to the M − N
dropped columns ofG. To satisfy these constraints, we check all of
them and then rescale the resulting weight vector so that the most
violated remaining constraint is satisfied with equality.

Since the initial choice of the columns of H (and their partic-
ular order in H) can greatly affect the resulting performance, we
compute multiple candidate values ofw that correspond to different
choices of dropped columns inG and different orders of the remain-
ing columns in H. From these candidate weight vectors, the vector
with the smallest norm (i.e., with the lowest total transmitted power)
is finally chosen.

The process of finding the best (in terms of performance) or-
dered subset ofN vectors out of the set ofM channel vectors {h̃i}M

i=1

requires checkingM !/(M −N)! possibilities. Clearly, for largeM
and N this can be computationally prohibitive. Therefore, we pro-
pose to check nQR � M !/(M − N)! random permutations where
nQR is a design parameter that can be used to trade off between
computational complexity and performance. The resulting domi-
nant complexity of our algorithm is given byO(nQR(N3 + MN)).
Therefore, for a reasonably low choice of nQR, the proposed tech-
nique represents a computationally attractive alternative to the SDR
technique.

4.2. The Gram-Schmidt Orthogonalization Based Technique

As the computational complexity of the QR-decomposition tech-
nique can be still rather high, in this subsection we consider a com-
putationally more efficient ad hoc approach to properly choose the
columns of H and their order in the case when the Gram-Schmidt
procedure is used to orthogonalize the channel vectors.

We start by choosing an arbitrary initial channel vector f1 from
the set {h̃i}M

i=1. Hereafter, we denote the N vectors chosen from
this set at the N steps of the Gram-Schmidt procedure as fi, i =
1, . . . , N (the way of selecting these vectors will be discussed in
the sequel). The Gram-Schmidt orthogonalization process can be
written as

bk = fk −
k−1∑
i=1

qH
i fk qi, qk = bk/‖bk‖ (13)

for k = 2, . . . , N where q1 = f1/‖f1‖. In each kth step, the inter-
mediate weight vector can be computed as:

wk =

k−1∑
i=1

ciqi (14)

where the principle of computing the coefficients ci is the same as
in the QR-decomposition based technique discussed in the previous
subsection. Our key idea of selecting the channel vectors fi from
{h̃i}M

i=1 can be described as follows. In each kth step of the Gram-
Schmidt procedure, we select the vector for which it is most difficult
to satisfy the corresponding QoS constraint. That is, the vector hav-
ing the smallest magnitude of its inner product with wk is selected.
It can be shown that this criterion for selecting the channel vectors at
any kth step amounts to choosing the vector that corresponds to the
smallest |βk|. As the component that is added to the weight vector in
any step is orthogonal to the channel vectors selected in the previous
steps, it will not affect any of the previously satisfied constraints.

Finally, (3) is used to compute the resulting w. This vector is
then rescaled to satisfy the most violated of the remaining M − N
constraints with equality.

The whole orthogonalization process has to be repeatedM times,
where each time a new channel vector is chosen as the initial vector
f1 for the Gram-Schmidt procedure. As a result, we end up withM
candidate weight vectors and the one having the smallest norm is
chosen as the final weight vector. The complexity of this technique
is O(MN3 + M2N).

4.3. Refinements by local search

We have found that a simple approach can be used to improve the
multicasting techniques developed in Subsections 4.1 and 4.2. The
idea is to perform an unconstrained local search for any candidate
weight vectorwcand,i used in these techniques. The algorithm takes
this vector as a starting point and searches for another vector w̃i in its
neighborhood that maximizes the worst user SNR. This is achieved
by finding a local maximum of the function

f(w̃i) = min
k

|w̃H
i h̃k|

for all values of i. The resulting vectors are then treated as the can-
didate weight vectors. Note that global maximization of the worst
user SNR under a power constraint is also non-convex, NP-hard,
and closely related to our original problem [1]; but what we advocate
here is only local refinement, which can be easily accomplished us-
ing a variety of standard methods such as the Nedler-Mead simplex
algorithm which is used in the MATLAB function fminsearch.

5. SIMULATION RESULTS

Throughout our simulations, we assume a Rayleigh fading channel
with i.i.d. circularly symmetric unit-variance channel coefficients.

In all our examples, we compare the two proposed techniques
(both combined with the local search algorithm) and the SDR tech-
nique of [1]. The acronyms QRLS and GSLS stand for the QR-deco-
mposition based technique with local search and the Gram-Schmidt
technique with local search, respectively. The fminsearchMAT-
LAB function has been used for the local search. All our results
are averaged over 1000 Monte Carlo runs. To implement the SDR
approach, we have followed the guidelines of [1] where three differ-
ent randomization procedures have been used in parallel, with 1000
randomizations for each. Throughout the simulation examples, it is
assumed that σ2

i = 1 for all i = 1, . . . , M . The parameters of the
QRLS and GSLS have been chosen in two different regimes:

Fast regime to make the total complexity of the QRLS and
GSLS techniques substantially lower than that of the SDR tech-
nique. In this regime, NQR = 50 has been taken, and the fol-
lowing parameters of the fminsearch function have been cho-
sen: MaxFunEvals = 500 and MaxFunEvals = 125 for GSLS and
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QRLS, respectively; and MaxIter = 200 and MaxIter = 125 for
GSLS and QRLS, respectively. In this regime, according to a simple
MATLAB time count comparison, the GSLS and QRLS computa-
tion times are on average 21% and 42% of that of the SDR tech-
nique, respectively.

Slow regime to make the total complexity of the QRLS and
GSLS techniques similar to that of the SDR technique. In this case,
in the GSLS method the tolerance parameter TolX of fminsearch
has been set equal to 10−3 and the parameters MaxFunEvals and
MaxFunEvals were not limited. In the QRLS case, the following
parameters have been selected: MaxFunEvals = 1000 and
MaxFunEvals = 400. In this regime, the GSLS and QRLS MAT-
LAB times are on average 93% and 116% of that of the SDR tech-
nique, respectively.

In the first example, we assume that the prescribed minimum
SNR γmin,i = 1 and use the so-called boost ratio [1]

η = ‖wfin‖2/trace{Xopt}
to characterize the performance, wherewfin is the final beamformer
weight vector of each technique tested and Xopt is the solution of
the relaxed problem obtained from (2) by dropping the rank con-
straint. It should be stressed that trace{Xopt} is a lower bound on
the transmitted power corresponding to the original problem (1); see
[1] for more details.

The mean and the standard deviation (std) values of the boost
ratio are summarized in Table 1 for different values ofN andM . As
can be observed from this table, the QRLS and GSLS techniques in
the slow regime have generally improved values of the boost ratio as
compared to the SDR technique. In the fast regime, the boost ratios
of the QRLS are GSLS methods are generally comparable to that of
the SDR method.

Table 1. Comparison of the boost ratios of the QRLS, GSLS, and
SDR techniques.

N /M 4/8 4/16 8/16
Mean Std Mean Std Mean Std

SDR 1.13 0.16 1.49 0.31 1.82 0.38
QRLS fast 1.27 0.14 1.52 0.22 1.98 0.30
GSLS fast 1.27 0.16 1.44 0.24 1.78 0.30
QRLS slow 1.10 0.09 1.38 0.19 1.84 0.25
GSLS slow 1.07 0.11 1.27 0.19 1.45 0.19

In our second example, we compare the total transmitted power
of the SDR, QRLS, and GSLS techniques versus the prescribed min-
imum SNR. In this example, we assume that N = 4 and M = 16,
and all the other parameters are the same as in the previous example.

From this figure, we observe that the “slow” GSLS and QRLS
techniques have a significantly reduced total transmit power as com-
pared to the SDR technique. For example, the power improvements
of “slow” GSLS with respect to the SDR technique are close to 1 dB
for all the SNR values tested. The “fast” GSLS and QRLS result in
nearly the same transmit power values as the SDR method.
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Fig. 1. Total transmitted power versus prescribed minimum SNR.

Therefore, the proposed techniques offer improved (and more
flexible) performance-to-complexity tradeoffs than the SDR appro-
ach.

6. CONCLUSIONS

Several methods have been proposed to approximately solve the si-
ngle-group multicasting problem using a combination of channel
orthogonalization and local refinement. The proposed techniques
have been shown to offer improved and more flexible performance-
to-complexity tradeoffs as compared to the popular SDR multicast-
ing technique. In particular, our techniques can be tuned to achieve
nearly the same performance as the SDR method at a significantly
lower computational cost, or, alternatively, achieve a substantially
improved performance relative to the SDR technique at nearly the
same complexity.
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