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ABSTRACT

We consider a relay network which consists of two transceivers
and r relay nodes. We study a half-duplex two-way relaying scheme.
First, the two transceivers transmit their information symbols si-
multaneously and the relays receive a noisy mixture of the two
transceiver signals. Then each relay adjusts the phase and the
amplitude of its received signal by multiplying it with a complex
beamforming coefficient and transmits the so-obtained signal. Aim-
ing at optimally calculating the beamforming weight vector as well
as the transceiver transmit powers, we minimize the total transmit
power subject to two constraints on the receive signal-to-noise ratios
(SNRs) at the two transceivers. We show that the optimal weight
vector can be obtained through a simple iterative algorithm which
enjoys a linear computational complexity per iteration.

Index Terms— Distributed beamforming, two-way relaying,
distributed signal processing, bi-directional relaying, optimal power
allocation, wireless relay networks.

1. INTRODUCTION

In cooperative wireless networks, different users act as relay nodes
and collaborate with each other to establish a communication link
between a transmitter and a receiver [1, 2]. The numerous relaying
schemes presented in the literature study different kinds of process-
ing on the signal received at the relay nodes. Examples of such
schemes are amplify-and-forward approach, estimate-and-forward
technique, decode-and-forward strategy, and compress-and-forward
method. Typically, in a one-way relaying scheme, the communi-
cation is established in two steps. In the first step, the transmitter
broadcasts its symbols to the relays. Then each relay processes its
received signal based on the underlying relaying scheme and pro-
duces a new signal. In the second step, the so-obtained signal is
transmitted by the relays to the receiver.

Recently, decentralized beamforming techniques have been
presented for relaying schemes where the relays re-transmit an
amplitude- and phase-adjusted version of their received signals
[3–6]. Also, the problem of joint uplink-downlink beamforming has
been studied for a single-relay network where the relay is equipped
with multiple antennas [7]. Majority of the results published on
decentralized beamforming consider a one-way relaying scheme
where the relay nodes cooperate with each other to deliver the sym-
bols transmitted by a source (or several sources) of information to
a destination (or to several destinations). The literature considering
two-way relaying strategies is scarce as compared to the volume of
the published reports on one-way relaying schemes. In this paper,
we study the problem of optimal decentralized beamforming for
bi-directional (or two-way) wireless relay networks.

In a bi-directional relay network, the relays cooperate with each
other to establish a reliable connection between two transceivers.
Most of the published results on two-way relaying strategies con-
sider the case of single relay strategies. Designing optimal bi-
directional relaying schemes for a network with multiple relays is
our focus in this paper. We study the problem of network beam-
forming for two-way relay communications. We consider a network
consisting of two transceivers and r relay nodes. We assume that
there is no direct link between the two transceivers, and therefore,
they must communicate with each other through the relay network.
Our relaying scheme consists of two phases. In the first phase, the
two transceivers transmit their data to the relaying nodes. In the
second phase, each relay node re-transmits an amplified and phase-
steered version of its received signal. In fact, each relay multiplies
its received signal by a complex coefficient and transmits the so-
obtained signal in the second phase thereby collectively building a
beam which covers both transceivers. Our goal is to optimally obtain
the relay beamforming complex coefficients using a total transmit
power minimization approach. More specifically, we aim to min-
imize the total transmit power, dissipated in the whole network,
subject to two constraints on the quality of service (QoS) of the two
transceivers. We show that this power minimization problem can
be solved efficiently using an iterative steepest descent algorithm.
We show how such a solution can be implemented in a distributed
manner leading to a minimal communication among the transceivers
and the relays. In fact, we show that the inter-node communica-
tion bandwidth required by our distributed two-way beamforming
scheme will remain constant as the size of the network grows.

2. DATA MODEL

Let us consider a wireless network consisting of two transceivers
and r relay nodes as shown in Fig. 1. We assume that there is no
direct link between the two transceivers, and therefore, they must
communicate with each other through the relay nodes. Each node
of the network has a single antenna for both transmission and recep-
tion. Let fi1 and fi2 denote the complex coefficients representing
the flat fading channels from the ith relay to the transceivers 1 and
2, respectively. We herein study a two-step two-way amplify-and-
phase-adjust-and-forward relaying scheme. During the first step,
both transceivers broadcast their data to the relays simultaneously.
The relay received signals can be written, in vector form, as

x =
√

P1f1s1 +
√

P2f2s2 + ν (1)

where x is an r × 1 complex vector whose ith entry is the signal
received by the ith relay, Pk and sk are, respectively, the trans-
mit power of, and the information symbol transmitted by the kth
transceiver for k = 1, 2, ν is the r × 1 complex vector of the relay
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noises, fk � [f1k f2k . . . frk]T is the vector of channel coeffi-
cients between the relays and the kth transceiver, and (·)T stands
for the transpose operator. We assume that both transceivers know
both channel vectors f1 and f2. The ith relay multiplies its received
signal by a complex weight w∗

i , where (·)∗ denotes complex conju-
gate. The relays then simultaneously transmit the so-obtained sig-
nals in the second step. The r × 1 complex vector t of the re-
lays transmit signals can then be expressed as t = Wx where
W � diag([w∗

1 w∗

2 . . . w∗

r ]T ), and diag(a) denotes a diagonal
matrix with the elements of the vector a as its diagonal entries. The
signals received by transceivers 1 and 2 are given, respectively, by

y1 = f
T
1 t + n1 = f

T
1 W(

√
P1f1s1 +

√
P2f2s2 + ν) + n1 (2)

y2 = f
T
2 t + n2 = f

T
2 W(

√
P1f1s1 +

√
P2f2s2 + ν) + n2 (3)

where n1 (n2) is the receive noise at the first (second) transceiver.
Using the fact that aT diag(b) = bT diag(a), we rewrite (2) and
(3), respectively, as

y1 =
√

P1w
H
F1f1s1 +

√
P2w

H
F1f2s2 + w

H
F1ν + n1 (4)

y2 =
√

P1w
H
F2f1s1 +

√
P2w

H
F2f2s2 + w

H
F2ν + n2 . (5)

where Fk � diag(fk) for k = 1, 2, w � diag(WH), and (·)H

stands for Hermitian (conjugate) transpose. Here, diag(A) is a vec-
tor which contains the diagonal entries of the square matrix A. We
assume that both transceivers calculate the weight vector w. We
will later show how each relay can calculate its own optimal beam-
forming weight based on its local channel information and based
on a minimal amount of information that are broadcasted to all re-
lays by the two transceivers. Note that the first term in (4) depends
on the signal s1 transmitted by transceiver 1 during the first time
slot. As

√
P1F1f1 is known at transceiver 1 and the weight vec-

tor w is going to be calculated at this transceiver, the first term in
(4) is known at transceiver 1. Hence this term can be subtracted
from y1 and the residual signal can be processed at transceiver 1
to extract the information s2. Similarly, the second term in (5) can
be subtracted from y2 and the residual signal can be processed at
transceiver 2 to extract the information s1. That is, the residual sig-
nals ỹ1 � y1 − √

P1w
HF1f1s1 and ỹ2 � y2 − √

P2w
HF2f2s2

expressed as

ỹ1 =
√

P2w
H
F1f2s2 + w

H
F1ν + n1 (6)

ỹ2 =
√

P1w
H
F2f1s1 + w

H
F2ν + n2 (7)

can be used at their corresponding transceivers to extract the desired
information symbols. To optimally obtain the transmit powers P1

and P2 as well as the relay weight vector w, the total transmit power
consumed in the whole network can be minimized while guaran-
teeing that the receive SNRs at the two transceivers are kept above
certain thresholds. In the following sections, we study this approach
in further details.

3. POWER MINIMIZATION

Our goal is to obtain the beamforming weight vectors w and the
transmit power P1 and P2 through the minimization of the total
transmit power PT , dissipated in the network, while maintaining
the receive SNRs at both transceivers above certain levels, i.e., the
receive SNRs are constrained to be larger than given pre-defined
thresholds γ1 > 0 and γ2 > 0. Mathematically, we solve the fol-
lowing optimization problem:

min
P1,P2,w

PT subject to SNR1 ≥ γ1 and SNR2 ≥ γ2

Transceiver 1

Transceiver 2

f11

f12

Relay 1

f21

f22
Relay 2

f31

f32

Relay 3

fr1

fr2

Relay r

Fig. 1. A two-way relay network.

where SNRk is the receive SNR at the kth transceiver for k = 1, 2.
The total transmit power PT can be expressed as

PT = P1 + P2 + Pr (8)

Here, Pr is the relay transmit power and is given by Pr �
E{tHt} = wHDw where D � E{XHX}, X � diag(x),
and E{·} stands for statistical expectation. Using (1) and assuming
that the relay noise vector ν and the information symbols s1, s2 are
all zero-mean mutually independent random variables, the matrix
D can be written as D = P1F1F

H
1 + P2F2F

H
2 + σ2I where

we have assumed that E{νν
H} = σ2I and I stands for identity

matrix. Without loss of generality we assume that σ2 = 1 and
E{|sk|2} = E{|nk|2} = 1, for k = 1, 2, where | · | stands for
the amplitude of a complex number. Using (6) and (7), the receive
SNRs can be written as

SNR1 =
P2w

HhhHw

1 + wHF1F
H
1 w

, SNR2 =
P1w

HhhHw

1 + wHF2F
H
2 w

(9)

where h � F1f2 = F2f1 = f1 � f2, and � stands for element-wise
Schur-Hadamard matrix product. Using (8) and (9), the optimization
problem (8) can be rewritten as

min
P1,P2,w

P1(1 + w
H
F1F

H
1 w) + P2(1 + w

H
F2F

H
2 w) + w

H
w

(10)

subject to
P2w

HhhHw

1 + wHF1FH
1 w

≥ γ1 and
P1w

HhhHw

1 + wHF2FH
2 w

≥ γ2 .

Note that the inequality constraints in (10) are satisfied with equality
at the optimal point. This can be proved by contradiction. If, for ex-
ample, the first constraint in (10) is not satisfied with equality at the
optimum, then the optimal value of P2 can be scaled down to satisfy
this constraint with equality. However, reducing the optimal value
of P2 further reduces the objective function in (10) thereby contra-
dicting the optimality. Based on this observation, the transceiver
transmit powers can be obtained as

P1 =
γ2(1 + wHF2F

H
2 w)

wHhhHw
and P2 =

γ1(1 + wHF1F
H
1 w)

wHhhHw
. (11)

Using (11), the optimization problem (10) can be turned into the
following unconstrained optimization problem:

min
w

(1 + wHF1F
H
1 w)(1 + wHF2F

H
2 w)

wHhhHw
+ βw

H
w (12)
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where β � (γ1 + γ2)
−1. Let us define θ � [θ1 θ2 . . . θr]

T

and α � [α1 α2 . . . αr]
T where θi and αi are the phase and the

amplitude of wi, respectively, (i.e., wi = αie
jθi ) for i = 1, 2, . . . , r.

Since D1 � F1F
H
1 and D2 � F2F

H
2 are real-valued diagonal

matrices, the numerator of the first term of the objective function in
(12) can be written as (1 + α

T D1α)(1 + α
T D2α), and therefore,

it does not depend on θ. As a result, the minimization problem in
(12) is equivalent to

min
α�0

(1 + α
T D1α)(1 + α

T D2α)

p(α)
+ βα

T
α (13)

where p(α) � maxθ wHhhHw. Note that

p(α) = max
θ

∣∣∣∣∣
r∑

i=1

αibie
j(φi−θi)

∣∣∣∣∣
2

= |αT
b|2 . (14)

Here, bi and φi denote the amplitude and the phase of the ith entry
of h, respectively, and b � [b1 b2 . . . br]

T . The maximum in (14)
is achieved when θi = φi is chosen for any i. This means that the
phase of wi has to match to the phase of ith entry of h which is
equal to the aggregated phase of the channel coefficients from the
ith relay to the two transceivers. That is θi = φi = ∠fi1 + ∠fi2

where ∠z denotes the phase of the complex number z. Eventually,
the optimization problem in (13) can be written as

min
α�0

(1 + α
T D1α)(1 + α

T D2α)

αT bbT α
+ βα

T
α (15)

The gradient of the objective function in (15) can be obtained as

g(α) =
(1 + ζ1(α))(1 + ζ2(α))

ζ3(α)

(
Q(α)α − 1

αT b
b

)
(16)

where Q(α) is an r × r diagonal matrix defined as

Q(α) �
1

1 + ζ1(α)
D1 +

1

1 + ζ2(α)
D2

+
βζ3(α)

(1 + ζ1(α))(1 + ζ2(α))
I . (17)

Here, we have defined ζ1(α) � α
T D1α, ζ2(α) � α

T D2α, and
ζ3(α) � α

T bbT
α. Equating g(α) to zero yields

Q(α)α =
1

αT b
b . (18)

The optimal value of α can be obtained by solving the r non-linear
equations in (18).

Lemma 1: The set of non-linear equations in (18) has only two
solutions which are symmetric with respect to the origin. Moreover,
one of the solutions has all positive entries.

Proof: See [8].
It follows from Lemma 1 that the optimization problem (15)

does not have any local solution and it has only one global solu-
tion. Therefore, the steepest descent algorithm can be used to obtain
the global solution to (15). Let α

(k) denote the value of α at the
kth iteration. Then the iterative steepest descent technique can be
written as

α
(k) = α

(k−1) − μg(α(k−1)) (19)

where μ is the parameter that controls the trade-off between the sta-
bility and the convergence speed of the algorithm. Note that if we

choose the initial point as α
(0) � 0, the iterative algorithm in (19)

is guaranteed to converge to the optimal value αo � 0.
It can be observed from (16) and (17) that calculating the matrix

Q(α) and the gradient vector g(α) requires the calculation of three
quadratic terms, namely ζ1(α), ζ2(α), and ζ3(α). As the complex-
ity of calculating each of these terms is O(r), the iterative steepest
descent algorithm in (19) enjoys a linear computational complexity
O(r) per iteration.

Lemma 2: For symmetric QoS constraints where γ1 = γ2 =
γ, at the optimal solution, half of the total transmit power will be
allocated to the relaying nodes and the remaining half will be divided
between the two transceivers.

Proof: Let αo denote the optimal value of α. Then using (11),
the optimal transmit powers of the two transceivers are given by

P
o
1 =

γ(1 + ζ2(αo))

ζ3(αo)
and P

o
2 =

γ(1 + ζ1(αo))

ζ3(αo)
(20)

Using (20), the total relay transmit power can be written, at the opti-
mal solution, as

Pr = P
o
1 ζ1(αo) + P

o
2 ζ2(αo) + α

T
o αo

=
γ(1 + ζ2(αo))

ζ3(αo)
ζ1(αo) +

γ(1 + ζ1(αo))

ζ3(αo)
ζ2(αo) +

1

2
α

T
o αo

+
1

2
α

T
o αo

=
1

2
α

T
o αo +

γ(1 + ζ1(αo))(1 + ζ2(αo))

ζ3(αo)
×

(
ζ1(αo)

1 + ζ1(αo)
+

ζ2(αo)

1 + ζ2(αo)
+

(2γ)−1ζ3(αo)α
T
o αo

(1 + ζ1(αo))(1 + ζ2(αo))

)
︸ ︷︷ ︸

αT
o
Q(αo)αo=1

=
γ(1 + α

T
o D1αo)(1 + α

T
o D2αo)

αT
o bbT αo

+
1

2
α

T
o αo (21)

To arrive at (21), we have used the fact that α
T
o Q(αo)αo = 1 which

in turn follows from multiplying (18) by α
T from left and replacing

α with αo. Note that the minimum total transmit power P min
T for

symmetric scenarios is given by

P
min
T =

2γ(1 + α
T
o D1αo)(1 + α

T
o D2αo)

αT
o bbT αo

+ α
T
o αo . (22)

Comparing (21) and (22), we conclude that at the optimal solution
Pr = 1

2
P min

T holds true and the proof is complete. �
Note that we have assumed that the two transceivers use the it-

erative algorithm in (19) to calculate the optimal value αo. Then
one of the transceivers can send the ith entry of αo to the ith re-
lay over a control channel. In such a scheme, the bandwidth of the
control channel needs to be linearly increased as the number of re-
lays is increased. Alternatively, each relay can use (18) to calculate
the only entry of αo which it needs. To do so, the ith relay needs
the ith entries of D1 and D2 matrices as well as three quadratic
quantities: ζ1(αo), ζ2(αo), and ζ3(αo). In fact, the ith diagonal
entry of Q(αo) depends only on the ith entry of D1 and D2 and
on the values of ζ1(αo), ζ2(αo), and ζ3(αo). Assuming that each
relay knows its local channels and requiring the two transceivers to
broadcast only ζ1(αo), ζ2(αo), and ζ3(αo) to all relays, then each
relay can use the ith non-linear equation in (18) to calculate the only
element of αo that it needs. Such a distributed scheme requires a
minimal cooperation over the control channel.

2279



0 2 4 6 8 10 12 14 16 18 20

−10

−5

0

5

10

15

20

25

 

 

γ (dB)

P1

P2

Pr

PT

A
ve

ra
ge

po
w

er
s

(d
B

W
)

Fig. 2. The average minimum total transmit power, PT , the corre-
sponding average relay transmit power Pr , and the corresponding
average transceiver powers P1 and P2 versus γ1 = γ2 = γ for
σ2

f1
= σ2

f2
= 0 dB.

4. SIMULATION RESULTS

Throughout our numerical experiments, we consider a network with
10 relay nodes where the channel vectors f1 and f2 are generated in
each simulation run, as complex zero-mean Gaussian random vec-
tors with variances σ2

f1
and σ2

f2
, respectively. As these channel vec-

tors are assumed to be known at the two transceivers, σ2
f1

and σ2
f2

are the measures of the quality of the corresponding channel vec-
tors. The noise power σ2 is assumed to be equal to 0 dBW. Fig. 2
shows the average total transmit power PT , the average relay trans-
mit power Pr, and the average transceiver powers P1 and P2 versus
γ = γ1 = γ2 in dB for σ2

f1
= σ2

f2
= 0 dB. Fig. 3 illustrates the

same quantities versus γ in dB for σ2
f1

= 7 dB and σ2
f2

= 3 dB.
As can be seen from these two figures, the total relay power is 3 dB
below the total transmit power for both scenarios. This observation
is consistent with Lemma 2 as the QoS constraints are symmetric
in both figures. It can also be observed that the transceiver pow-
ers P1 and P2 are equal for σ2

f1
= σ2

f2
= 0 dB while P2 > P1 for

σ2
f2

< σ2
f1

. This means the transceiver with a better average channel
quality requires less power in average.

5. CONCLUSIONS

We studied the problem of optimal distributed two-way beamform-
ing for a relay network consisting of two transceivers and r relay
nodes. Our approach was based on the minimization of the to-
tal transmit power while maintaining the receive SNRs at the two
transceivers above certain given thresholds. We developed a simple
iterative method which is guaranteed to converge to the optimal
solution of our power minimization problem. We also proved that
when SNR constraints are identical, half of the power is allocated to
the two transceivers and the remaining half is allocated to the relay
nodes.
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Fig. 3. The average minimum total transmit power, PT , the corre-
sponding average relay transmit power Pr, and the corresponding
average transceiver powers P1 and P2 versus γ1 = γ2 = γ for
σ2
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= 7 dB and σ2

f2
= 3 dB.
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