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ABSTRACT
Recently, energy-based localization using acoustic energy measure-
ments has received much attention in wireless sensor networks. Since
the objective function of the energy-based maximum likelihood (ML)
localization is non-convex, the global solutions are hardly obtained
without good initial estimates. In this paper, we relax this non-
convex problem as a convex semidefinite programming (SDP), based
on which a good estimate can be obtained and be improved by a pro-
cedure called randomization. Simulation results show that the pro-
posed method is effective and outperforms the existing methods.

Index Terms— Acoustic energy, Source localization, Maximum-
likelihood, Sensor networks, Semidefinite relaxation (SDR)

1. INTRODUCTION

Recently, energy-based localization has received much attention in
wireless sensor networks [1]-[6]. In comparison with the localiza-
tion methods based on the information of time of arrivals (TOA) or
time differences of arrivals (TDOA), etc., energy-based localization
is often an appropriate choice that requires less resources to localize
a source in practical applications [2].

Recently, energy-based source localization is approached by a
number of researchers. Li and Hu proposed an energy decay model
[1] and verified the model in the real field experiment, according
to which the quadratic elimination (QE) method is proposed. How-
ever, simulation results [4, 5] show that the performance of the QE
method is not so satisfactory. Sheng and Hu gave an approach to
maximum likelihood multiple-source localization [2] with the use of
local search methods, which, however, is quite time-consuming and
may trap into the local minima. Blatt and Hero presented a localiza-
tion method in [3] with distributed implementation via projection-
onto-convex-sets (POCS), which converges to the global solution.
However, it suffers from the convex hull problem: the localization
method will fail when the source lies out of the convex hull of the
corresponding sensor locations. Therefore, the POCS method is
not suitable for localization in ad hoc networks where the sensor
structure is not fixed. Most recently, different two-stage closed-form
weighted least square (WLS) methods [4, 5] were proposed with less
computation for energy-based localization. Since the second-order
noise terms are ignored in the methods, the performance of the WLS
methods will be highly degraded when the noise becomes large.

In this paper, we propose a new method for energy-based local-
ization via semidefinite relaxation (SDR). As shown in [3] and [6],
the cost function in the ML formulation is non-convex. By using
SDR, this non-convex problem can be relaxed as a convex semidef-
inite programming (SDP). And a standard randomization procedure
is often used to refine the solution by the SDP.

2. SIGNAL MODEL

Here we adopt the energy decay model that is used in [2]-[4]. Con-
sider a network composed of N sensors where each sensor receives
M noisy measurements within a time interval. The intensity of the
source attenuates inversely proportionally to the distance from the
source to the sensor, i.e., the received signal at the ith sensor can be
written as

zi(t) =

√
gia(t − τi)

‖x − si‖β/2
+ wi(t), i = 1, . . . , N, (1)

where a(t) is the intensity of the source signal measured 1 m from
the source and wi(t) is the zero-mean Gaussian noise with variance
σ2

wi
, which is assumed to be independent to a(t). For simplicity, we

assume σ2
wi

is known and is identical for all sensors, i.e., σ2
wi

= σ2
w

for i = 1, . . . , N .
√

gi is the gain of sensor i, τi is the time delay
from the source to the sensor, and x and si represent the location of
the source and the ith sensor, respectively. β is the decay factor, and
is equal to 2 in free space, or slightly greater than 2 in the presence
of reflections and reverberations [1]. In this paper, we formulate the
localization problem with the decay factor of β ≥ 2.

The received energy at the ith sensor is averaged over M signal
measurements

yi =
1

M

M−1X
m=0

z2
i

„
ts +

m

fs

«
, (2)

where ts is the starting time and fs is the sampling frequency.
Substituting (1) into (2), expanding (2) yields

yi =
gi

M‖x − si‖β

M−1X
m=0

a2

„
ts +

m

fs
− τi

«

+
2
√

gi

M‖x − si‖β/2

M−1X
m=0

a

„
ts +

m

fs
− τi

«
wi

„
ts +

m

fs

«

+
1

M

M−1X
m=0

w2
i

„
ts +

m

fs

«
(3)

The cross term can be neglected when M is large due to the zero-
mean and independence assumption of a(t) and wi(t). Neglect-

ing the time delay and letting P = 1
M

PM−1
m=0 a2

“
ts + m

fs

”
and

vi = 1
M

PM−1
m=0 w2

i

“
ts + m

fs

”
, a more concise energy decay model

is obtained, so that

yi =
giP

‖x − si‖β
+ vi, i = 1, . . . , N. (4)
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According to the central limit theorem, if M is large enough,
the energy measurement noise of ith sensor vi approximately obey
a Gaussian distribution, i.e., vi ∼ N (σ2

w, 2σ4
w/M). According to

the distribution, we can see that the larger the M , the smaller the
energy noise variance. In the sequel, we will subtract the mean σ2

w

for simplicity1, and assume vi ∼ N (0, σ2
v), where σ2

v = 2σ4
w/M .

Notice that in [5] the authors derived a more accurate energy de-
cay model than that mentioned by (4), where an unknown correlation
function R(δ) is introduced. However, R(δ) is not involved in the
method they proposed in [5]. This means that the model proposed in
[5] cannot help improving the localization performance.

3. LOCALIZATION VIA SEMIDEFINITE RELAXATION

According to (4), the ML localization is formulated by

x̂ = arg min
x

MX
i=1

„
yi − giP

‖x − si‖β

«2

. (5)

It is obvious that (5) is nonlinear and non-convex. Here we approach
it via semidefinite relaxation.

3.1. Self localization of sensor locations

In the cooperative localization, for example, self localization of sen-
sor locations, transmit power P is often known. Here we consider
self localization with known P . According to (4), we have

yi − vi =
giP

‖x − si‖β
, (6)

which is equivalent to

yi − vi

giP
=

1

‖x − si‖β
. (7)

Then

1

‖x − si‖2
=

„
yi − vi

giP

« 2
β

≈
„

yi

giP

« 2
β
„

1 − 2

β

vi

yi

«
, (8)

where the approximation follows from the first-order Taylor expan-
sion. By taking simple manipulations, we have

yi

"
‖x − si‖2 −

„
giP

yi

« 2
β

#
=

2vi

β
‖x − si‖2. (9)

Let

di = ‖x − si‖ and εi =
2vi

β
‖x − si‖2,

we have

εi ∼ N `
0, σ2

i

´
, (10)

where σ2
i =

“
2d2

i
β

”2

σ2
v . Notice that since vi and vj are identically

independent distributed (i.i.d.), εi and εj(i �= j) are independent.
According to (9), the ML localization by (5) can be written as

x̂ = arg min
x

NX
i=1

y2
i

σ2
i

 
‖x − si‖2 −

„
giP

yi

« 2
β

!2

, (11)

1Here we assume yi > 0 (i = 1, . . . , N), which is actually assumed in
the previous works.

where σ2
i is a function of the true sensor location x in the definition

of (10). With the approximation d2
i ≈

“
giP
yi

”2/β

that follows from

(4), we can have

σ2
i ≈

"
2

β

„
giP

yi

« 2
β

#2

σ2
v. (12)

By expanding ‖x − si‖2 and denoting X = xxT , (11) can be
equivalently written as:

min
X ,x

NX
i=1

y2
i

σ2
i

 
tr(X) − 2sT

i x + ‖si‖2 −
„

giP

yi

« 2
β

!2

subject to X = xxT , (13)

where tr(X) denotes the trace of matrix X . Notice that the above
problem is still non-convex due to the equality constraint. By relax-
ing X = xxT into X � xxT (A � B means A − B is positive
semidefinite), and with the equivalence between X � xxT andˆ
X x; xT 1

˜ � 0 [8], we obtain the following SDP formulation:

min
X ,x

NX
i=1

y2
i

σ2
i

 
tr(X) − 2sT

i x + ‖si‖2 −
„

giP

yi

« 2
β

!2

subject to

»
X x
xT 1

–
� 0. (14)

Let [X̂
∗

x̂∗T ] denote the solution of (14). We apply the following
procedure called randomization: draw K samples x̂k from N (x̂∗,
X̂

∗ − x̂∗x̂∗T ) repeatedly and compute the corresponding value of
the objective function in (5). The estimate corresponding to the
smallest objective value is taken as the final one.

3.2. Source Localization

In the case of localizing an unknown source, the transmit power P
of the source is often unknown. In this case, it is difficult to local-
ize the source using the above-mentioned method. However, elimi-
nating the nuisance variable P will be very helpful. Similar to the
formulation in [2], the ratio of energy is given by

(yi − vi)/gi

(y1 − v1)/g1
=

‖x − s1‖β

‖x − si‖β
, (15)

which is equivalent to

»
(yi − vi)/gi

(y1 − v1)/g1

– 2
β

=
‖x − s1‖2

‖x − si‖2
. (16)

Applying the Taylor expansion to both the numerator and the de-
nominator on the left-hand side of (16) and neglecting the terms of
orders higher than 2, we have

[(yi − vi)/gi]
2
β ≈

„
yi

gi

« 2
β
„

1 − 2

β

vi

yi

«
. (17)

Notice that the two sides are strictly equivalent when β = 2.
Substituting (17) into (16) yields

“
yi
gi

” 2
β
“
1 − 2

β
vi
yi

”
“

y1
g1

” 2
β
“
1 − 2

β
v1
y1

” =
‖x − s1‖2

‖x − si‖2
. (18)
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With manipulations, we have

„
yi

gi

« 2
β

‖x − si‖2 −
„

y1

g1

« 2
β

‖x − s1‖2

=
2d2

i y

“
2
β
−1

”

i

βg
2
β

i

vi − 2d2
1y

“
2
β
−1

”

1

βg
2
β

1

v1

≈ 2d2
i P

“
2
β
−1

”

βgid
(2−β)
i

vi − 2d2
1P

“
2
β
−1

”

βg1d
(2−β)
1

v1

=
2dβ

i P

“
2
β
−1

”

βgi
vi − 2dβ

1P

“
2
β
−1

”

βg1
v1

� ξi1, (19)

where the approximation follows from yi ≈ giP

d
β
i

. Notice that the

approximation becomes equality when β = 2. By stacking ξi1(i =
2, 3, . . . , N), the vector ξ = [ξ21, ξ31, . . . , ξN1]

T is joint Gaussian
distributed:

ξ ∼ N (0, Q), (20)

provided that vi and v1 are i.i.d. Gaussian variables.
With the definition: Q � E[ξξT ], we have

Q[i − 1, j − 1] =

8>><
>>:

4d
2β
i P

( 4
β

−2)

β2g2
i

σ2
i +

4d
2β
1 P

( 4
β

−2)

β2g2
1

σ2
1 , i = j;

4d
2β
1 P

( 4
β

−2)

β2g2
1

σ2
1 , i �= j.

,

for i, j = 2, 3, . . . , N. (21)

If yi/gi �= y1/g1 (i �= 1), then the term of left-hand side in (19) can
be written as„

yi

gi

« 2
β

‖x − si‖2 −
„

y1

g1

« 2
β

‖x − s1‖2

=

"„
yi

gi

« 2
β

−
„

y1

g1

« 2
β

# `‖x − ci1‖2 − r2
i1

´
, (22)

where ci1 =
si−ϕ2

i1s1
1−ϕ2

i1
and ri1 = ϕi1‖si−s1‖

1−ϕ2
i1

with ϕi1 =
h

(yi/gi)
(y1/g1)

i 1
β

.

Stacking all these terms on the right-hand side of (22) into a vector
θa, we can have

θa ∼ N (0, Qa), (23)

where Qa is similarly defined as Q in (21).
On the other hand, if yi/gi = y1/g1, then (19) reduces to

hi1 − lT
i1x =

2
42d2

i y

“
2
β
−1

”

i

βg
2
β

i

3
5 vi −

2
42d2

1y

“
2
β
−1

”

1

βg
2
β

1

3
5 v1, (24)

where li1 = 2(y1/g1)
2
β (si − s1) and hi1 = (y1/g1)

2
β (‖si‖2 −

‖s1‖2). Similarly, stacking the terms on the left-hand side of (24)
into the vector θb, we have θb ∼ N (0, Qb), where Qb is defined as
Q.

Substituting dβ
i ≈ giP

yi
into (21) and defining

Q′ � 1

P (4/β)
Q, Q′

a � 1

P (4/β)
Qa, Q′

b � 1

P (4/β)
Qb,

we have

θT
a Q−1

a θa + θT
b Q−1

b θb ∝ θT
a Q′−1

a θa + θT
b Q′−1

b θb. (25)

The ML estimate can thus be obtained by

x̂ = arg min
x

(θT
a Q−1

a θa + θT
b Q−1

b θb)

= arg min
x

(θT
a Q′−1

a θa + θT
b Q′−1

b θb). (26)

Similar to the case in sensor self-localization, we have

‖x − ci1‖2 = tr(X) − 2cT
i1x + ‖ci1‖2

with X = xxT . (27)

Relaxing X = xxT to X � xxT , we obtain the following SDP
formulation:

min
X ,x

θT
a Q′−1

a θa + θT
b Q′−1

b θb

subject to

»
X x
xT 1

–
� 0. (28)

After solving (28), similar procedure used in the last subsection
is employed to get the final estimate. Note that the original objective
function in (5) is used here but without knowledge of P . There-
fore, we will first estimate P using the linear weighted least squares
(LWLS) method after drawing a sample, and then we compute the
corresponding value of the objective function.

4. SIMULATION RESULTS

In this section, we will show the performance of the proposed method
through simulations. And we will compare the performance of the
proposed method with the methods presented in [4] and [5], which
are called the weighted least squares (WLS) and the weighed direct
least squares with correction (WDC), respectively.

4.1. Self localization of sensor locations

9 randomly and uniformly distributed sensors in a 2-D sensor field
of size 25 × 25 square meters are employed in our simulations. The
locations of the sensors are assumed to be known. The data are
generated according to (4), where we set β = 2, P = 100 and
gi = 1 (i = 1, . . . , N). In the simulations, P is known. The
number of the samples drawn in the procedure of randomization is
K = 1000. The performance is evaluated by root mean square error
(RMSE) defined by

RMSE =

vuut McX
m=1

‖x̂m − x‖2

Mc
(29)

where Mc is the number of Monte Carlo (MC) runs and x̂m is the
estimate of source location in the mth run. In the simulations, we set
Mc = 3000. In each run, the location of the sensor to be estimated is
generated randomly and uniformly in the sensor field. The Cramer-
Rao bound (CRB) is computed the same as that in [4]. Note that
the WDC method can be modified and be used to self-localization.
For fair comparison, in the simulations we apply the improving tech-
nique used in Section V of [4] to the WDC method although there is
no such a technique in the method presented in [5]. The RMSEs are
shown in Fig. 1, where we see that the performance of the proposed
method is better than that of the WDC method, and most impor-
tantly, the proposed method can achieve the CRB in a moderately
noisy environment.
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Fig. 1. Comparison of different methods in self localization
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Fig. 2. Comparison of different methods in source localization

4.2. Source Localization

The simulation parameters are set as the same as those in last sub-
section, except that P is unknown in the simulations. In Fig. 2,
the RMSEs obtained by WLS, WDC and the proposed method are
plotted for comparison. It is seen that Fig. 2 shares the similar phe-
nomenon to that of Fig. 1. To further show the performance of the
proposed method when the noise is large, we plot the cumulative dis-
tribution function (CDF) of the estimation errors (‖x̂m − x‖, m =
1, 2, . . . , Mc) of all the MC runs in Fig. 3 when σv = 0.2. From
Fig. 3, we see that the estimation errors in over 85% of the simulated
runs are close to the CRB, which indicates that the proposed method
is very efficient.
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Fig. 3. The CDF of the estimation errors when σv = 0.2

5. CONCLUSIONS

In this paper, we have proposed a new method for energy-based
source localization by SDR. Using the solution of the SDP, we apply
the randomization procedure to find a better estimate. Simulation re-
sults show the proposed method outperforms the existing methods.
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