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ABSTRACT
In a parallel distributed detection in order to design the opti-
mal fusion rule, the fusion center needs to have perfect know-
ledge of the performance of the local detectors as well as the
prior probabilities of the hypotheses. Such knowledge is not
available in most practical cases. In this paper, we propose a
blind technique for the M -ary distributed detection problem.
We derive the probability mass function of the local decisions
and use this result to develop maximum likelihood estimates
of unknown parameters. We also derive analytically the ove-
rall detection performance for both binary and M -ary distri-
buted detection and discuss the difference of the overall de-
tection performance obtained using the estimated values of
unknown parameters and their true values. Finally, we de-
monstrate the applicability of our results through numerical
examples.

1. INTRODUCTION

Hypothesis testing in distributed signal processing, referred
to as distributed detection, is different in essence from that
in classical multichannel scenarios. In the latter, usually re-
ferred to as centralized detection, observations from all chan-
nels are communicated to a central processor, where statisti-
cal inference on the hypotheses is conducted. However, many
practical difficulties restrict the applicability of centralized de-
tection, such as communication bandwidth, data transmission
speed and computational complexity. In addition, observations
collected from different channels could be incomparable and
a decision on the hypothesis in question based on a mixture of
observations may not be reliable [1]. In contrast to centralized
detection, each local detector of a parallel distributed detec-
tion system preprocesses the observations it collects, makes a
local decision and then transmits it to a fusion center where a
global inference is made.
Binary distributed detection problems have been extensively
studied [1–6]. It has been shown that for a parallel distributed
detection system with conditionally independent local detec-
tors, when local decision rules are given, the optimal distribu-
ted detection in the sense of minimizing overall error probabi-
lity can only be achieved if the prior probabilities of the two
hypotheses and the parameters describing the performance of
local detectors are known. An online adaptive algorithm has
been proposed in [3] to estimate the unknown parameters, or
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the necessary weights may be estimated directly using rein-
forcement learning as suggested in [4] and [5]. To bypass the
aforementioned problems, the authors of [6] found the unk-
nown parameters can be yielded by analytically solving a set
of nonlinear equations involving the probabilities of different
decision combinations at all local detectors, which although
are not available in practical applications either, could be re-
placed by their corresponding empirical probabilities. The re-
sulting estimator is asymptotically unbiased and substantially
more reliable. The distributed detection process with multiple
hypotheses, usually referred to as M -ary distributed detec-
tion, has recently attracted wide interest [7–9], because a large
number of practical problems
In our previous work [10] we derived a blind algorithm for

M -ary decision fusion using least-squares estimation and su-
boptimal hierarchical grouping of hypotheses. However due
to its non-optimality the convergence time and/or detection
and false alarm errors may be unacceptable in certain appli-
cations. In this paper we propose to estimate the unknown pa-
rameters (prior probabilities and local detectors’ probabilities
of false alarm and miss) using statistically optimal maximum
likelihood (ML) estimator. The ML estimator accounts for the
known parametric form of the likelihood function of local de-
cision combinations, and hence has a better estimation accu-
racy than the LS estimator. This is especially the case when
only a small number of local decisions are used. We then
present the analytical expression of overall error probability
when the true values of the parameters are given and explore
the effect of our blind algorithm to the system detection per-
formance.We illustrate the applicability of our results through
numerical examples.

2. OPTIMALM -ARY FUSION RULE

Let us assume the parallel distributed detection system consis-
ting ofN local detectors. In general, the phenomenon changes
from time to time, and at each time it could be one of the
M possible hypotheses {H0, H1, · · · , HM−1} with prior pro-
babilities P (Hi), i = 0, · · · , M − 1, respectively. For each
time, the local detectors Dj , j = 1, · · · , N make a decision
uj individually according to their own observations zj . Given
the unknown hypothesisHi, the decision uj is assumed to be
conditionally independent of the decisions from other local
detectors. The local detector Dj then sends uj to the fusion
center, where a global decision u0 on the hypothesis is made
based on a particular optimality criterion. For the jth detector,
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we define the probability of anomaly as

ε
j
ik � P (uj = Hk|Hi is true) (1)

where uj is the decision of the jth local detector, i, k ∈ {0, · · · , M−
1} and i �= k.
The fusion rule can be derived by minimizing the proba-

bility of error at the fusion center

Pe =

M−1∑
i=0

M−1∑
k=0

k �=i

P (Hi)P (u0 = Hk|Hi is true) (2)

It has been shown in [13] that minimizing the error probability
in Eq. (2) reduces to maximizing the posterior probability

P (Hi|u) = P (Hi|u1, u2, · · · , uN )

=
P (Hi)

P (u)
P (u1|Hi) · · ·P (uN |Hi) (3)

where u = (u1, · · · , uN ). For i = 0, · · · , M − 1, the global
decision is therefore [7]

u0 = argmax
Hi

P (Hi|u)

= argmax
Hi

P (Hi)
∏

j∈S0

ε
j
i0 · · ·

∏
j∈SM−1

ε
j
iM−1

(4)

3. PARAMETER ESTIMATION

In practice, we have no knowledge on prior probabilities
of the hypotheses and the local detector performance.We have,
in general, only a set of decision sequences {ujn}, j = 1, · · · , N
and n = 1, · · · , Nd available, where Nd is the total number
of decisions made by a particular local detector. For a fixed n,
the set represents the decisions on the same hypothesis made
byN local detectors. It represents the decision sequencemade
by a particular local detector when j is fixed. In order to apply
Eq. (4) to achieve the multiple hypothesis optimality, we need
to estimate the unknown parameters, i.e., prior probabilities
and probabilities of anomaly using local decisions.
For M hypotheses and N local detectors, let U be the

set consisting of all of the possible decision combinations.
Clearly, dim(U) = MN . Let the random variable X� indi-
cate the number of times the �th combination u� occurring
with occurrence probability P (u�), where � = 1, · · · , L and
L = MN . We refer toX� as occurrence number. Furthermore,
recall the Bayes’ rule and conditional independence, the pro-
bability of one of theMN possible combinations can be writ-
ten as

p� = P (u�)

=

M−1∑
i=0

P (Hi)P (u1 = s1, · · · , uN = sN |Hi)

=

M−1∑
i=0

P (Hi)P (u1 = s1|Hi) · · ·P (uN = sN |Hi)(5)

where s1, · · · , sN ∈ {H0, · · · , HM−1}. Substituting the true
values of prior and anomaly probabilities into Eq. (5) gives

all occurrence probabilities. For a fixed total number of local
decisionsNd, the occurrence numbers of all possible decision
combinations, namelyX = (X1, X2, · · · , XL), are multino-
mial distributed with probability mass function

P (X1 = x1, · · · , XL = xL|Nd) =
Nd!

x1! · · ·xL!
px1

1
· · · pxL

L

(6)
and var(X�) = Ndp�(1 − p�), cov(XsX�) = −Ndpsp� for
s = 1, · · · , L and s �= �. We define the vector ε consis-
ting of (M − 1)MN unknown probabilities of anomaly in
Eq. (1) and the (MN + 1)(M − 1) – dimensional vector
θ = [ε, P (H0), · · · , P (HM−2)]. As illustrated in Eq. (5),
the occurrence probability p� is the nonlinear function of unk-
nown parameters represented by θ, i.e., p� = f�(θ).
For binary distributed detection, the unknown parameters

can be obtained by analytically solving a set of nonlinear equa-
tions described in Eq. (5). It has also been shown in [6] that
the estimates of unknown parameters converge to their true
values asymptotically. We propose to extend the approach to
its M -ary counterpart. The particular occurrence probability
is estimated as time averaging, i.e., empirical probability

p� = P (u1 = s1, u2 = s2, · · · , uN = sN )

�
number of (u1 = s1, · · · , uN = sN )

total number of local decisionsNd

(7)

where s1, · · · , sN ∈ {H0, · · · , HM−1}. Let the estimate of
the �th occurrence probability be yt and recall the true occur-
rence probability p� = f�(θ), hence

y� = f�(θ) + e�, � = 1, · · · , L (8)

where e� is the estimation error. We define the vector y =
[y1, y2, · · · , yL]T , f(θ) = [f1(θ), f2(θ),
· · · , fL(θ)]T , and e = [e1, e2, · · · , eL]T , the problem can
therefore be formulated as

y = f(θ) + e (9)

To account for the known distribution of local decision
combinations, the ML estimation is a very efficient algorithm
to apply. As discussed before, the occurrence number of dif-
ferent local decision combinationsX� is multinomial distribu-
ted with likelihood function

P (X1 = x1, · · · , XL = xL|Nd, θ)

=
Nd!

x1! · · ·xL!
px1

1
· · · pxL

L (10)

where p� = f�(θ), � = 1, · · · , L. Once the occurrence num-
bers are known, the estimate is

θ̂ = arg max
θ

P (X1 = x1, · · · , XL = xL|Nd, θ) (11)

4. PERFORMANCE ANALYSIS

In this section we derive the overall probability of error for the
proposedM -ary fusion system. In this case,M −1 likelihood
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ratios are necessary to derive the detection scheme. For � =
0, · · · , M − 1, let us define

Λ�(u) =
P (u|H�)

P (u|H0)
(12)

and

φ�(u) =
M−1∑
j=0

j �=�

P (Hj)P (u|Hj) (13)

The global decision is the hypothesis corresponding to the mi-
nimum value of φ�(u) as shown in [13]. Dividing Eq. (13) by
P (u|H0) yields

ϕ�(u) =

M−1∑
j=0

j �=�

P (Hj)Λ�(u) (14)

The global decision rule can be written as

u0 = H� if ϕ�(u) = min{ϕ0(u), · · · , ϕM−1(u)} (15)

The decision space is anM−1 dimensional space spanned by
the likelihood ratios Λ1(u), · · · , ΛM−1(u). We then define
the weight for each likelihood ratio similar to that in binary
detection. Let

w�
0

= log
P (H�)

P (H0)
, ∀ � = 1, · · · , M − 1 (16)

and for � = 1, · · · , M − 1, let w�
j be the weight of the �th

likelihood ratio defined in Eq. (12). If the jth local detector
makes a decision in favor ofHk, then

w�
j = log

P (uj = Hk|H�)

P (uj = Hk|H0)

= log
ε

j
�k

ε
j
0k

, ∀ j = 1, · · · , N (17)

The weight w�
j is a random variable and can take on M pos-

sible values with known probabilities depending only on the
decision made at the jth local detector, i.e.,

P

(
w�

j = log
ε

j
�k

ε
j
0k

|Hi is true

)
= ε

j
ik

Once the decision at the jth local detector is determined, the
values of all weights corresponding to the same detectorw�

j , � =

1, · · · , M − 1 are known. Substituting all weights w�
0
and w�

j

into the global decision rule in Eq. (15) arrives at the glo-
bal decision. Consequently, the global decision rule forM -ary
distributed detection can be written in a compact form

u0 =

⎧⎪⎨
⎪⎩

H0, if
∑N

j=0
w�

j < 0, ∀� = 1, · · · , M − 1

Hk, if
∑N

j=0
wk

j > 0 and
∑N

j=0
wk

j =

max{
∑N

j=0
w1

j , · · · ,
∑N

j=0
wM−1

j }

(18)
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Fig. 1. Comparison of MSE.

Therefore the overall probability of error is

Pe = 1−

M−1∑
i=0

P (Hi)P (u0 = Hi|Hi)

= 1− P (H0)P

⎡
⎣ N∑

j=0

w1

j < 0, · · · ,

N∑
j=0

wM−1

j < 0|H0

⎤
⎦−

−

M−1∑
i=1

P (Hi)P

⎡
⎣ N∑

j=0

wi
j > 0, Ei|Hi

⎤
⎦

(19)

where the event Ei is defined as

Ei =

N∑
j=0

wi
j >

N∑
j=0

wn
j , ∀ n = 1 · · · , M − 1 and n �= i

(20)
Note that the above expression depends on the anomaly pro-
babilities which in blind case are estimated i.e., are random
variables. Consequently, the overall probability of error is also
a random variable which is further demonstrated in Section 5.

5. NUMERICAL EXAMPLES

In this Section we demonstrate the applicability of our results.
In all examples, we assume the distributed detection system
consisting of three local detectors and consider a detection
scenario withM = 3 hypotheses. In Fig 1, we evaluate the es-
timation accuracy of the proposed algorithms based on 10000
runs. For comparison purposes in addition to ML estimation
we performed least-squares (LS) estimation by minimizing
the mean square error ‖y − f(θ)‖2. Decisions from three lo-
cal detectors are generated according to the true values of prior
and anomaly probabilities and the MSE corresponding to LS
and ML estimators is illustrated. As expected, the ML estima-
tor outperforms the LS estimator. The MSE of ML estimator
is relatively small and does not decrease significantly with the
increasing number of local decisions.
In Fig. 2, we demonstrate how overall probability of error

evolves with the increasing number of local decisions using
two different estimation algorithms for 3-ary distributed de-
tection system. The theoretical value is computed by substi-
tuting the true values of both prior and anomaly probabilities
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Fig. 2. Overall performance of 3-ary distributed detection sys-
tem.
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Fig. 3. Comparison of overall error probability using direct
substitution and Monte Carlo simulation.

into Eq. (19). The other two overall error probability curves
are obtained based on 10000 runs. In general, the overall er-
ror probability using ML estimates is smaller and more im-
portantly, converges faster than that using LS estimates. We
can also see from the same figure that for a particular set of
unknown parameters, there exists a threshold above which in-
creasing number of local decisions will not yield significant
improvements in the performance.
As we have stated in Section 4, Eq. (19) gives us the theo-

retical value of overall error probability only when true values
of unknown parameters are known. In blind case the overall
detection performance can only be assessed through Monte
Carlo simulations. However, direct substitution of the esti-
mates into Eq. (19) gives us a rough idea of the overall detec-
tion performance. The difference of overall error probabilities
obtained by these two methods is shown in Fig. 3. As it can
be seen direct substitution of estimated values in Eq. (19) pro-
vides reasonable approximation (less than 5%) after relatively
small number of samples 1̃00.
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