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ABSTRACT

In this paper, we re-examine the recently proposed distributed
state estimators based on quantized innovations. It is widely
believed that the error covariance of the Quantized Innova-
tion Kalman filter [1, 2] follows a modified Riccati recursion.
We present stable linear dynamical systems for which this is
violated and the filter diverges. We propose a Particle Filter
that approximates the optimal nonlinear filter and observe that
the error covariance of the Particle Filter follows the modified
Riccati recursion of [1]. We also simulate a Posterior Cramer-
Rao bound (PCRB) for this filtering problem.

Index Terms— Distributed state estimation, Sign of In-
novation, Particle Filter, Wireless sensor network, Posterior
Cramer-Rao bound (PCRB).

1. INTRODUCTION

Recent advances in very large-scale integration and micro-
electromechanical system technology have led to the avail-
ability of cheap, low quality and low power consumption sen-
sors in the market. This generated a great deal of interest in
wireless sensor networks (WSNs) due to their potential ap-
plications in several diverse fields [3]. Sensor network con-
straints such as limited bandwidth and power inspired a con-
siderable amount of research in developing energy efficient
algorithms for network coverage and decentralized detection
and estimation using quantized sensor observations [4–6].
Quantizing sensor observations can lead to large quanti-

zation noises when the observed values are large which then
leads to poor estimation accuracy. In [1], this limitation is
overcome by developing an elegant distributed estimation ap-
proach based on quantizing the innovation to one bit (so called
sign of innovation or SOI). In [2], this is generalized to han-
dle multiple quantization levels. In both cases, it is assumed
that the innovation is approximatelyGaussian leading to a lin-
ear filter and very simple characterization of its error perfor-
mance. Under the Gaussian assumption, the error covariance
matrix associated with the state estimation error satisfies a
modified Riccati recursion of the type that appears in [7]. The
only difference between this modified Riccati and the tradi-
tional one is a scaling factor λ multiplying the nonlinear term

of the recursion. For the SOI Kalman filter (SOI-KF), λ is
π
2 while [2] presents a formula for λ in the case of multiple
quantization levels. Henceforth, these filters will be referred
to as SOI-KF and MLQ-KF, and their associated Riccati re-
cursions as SOI-Riccati and MLQ-Riccati respectively.
For linear time invariant dynamical systems, if Gaussian

assumption were realistic, convergence of the modified Ric-
cati must mean the convergence of the corresponding linear
filters. Using results presented in [7] one can come up with
linear time invariant systems for which the MLQ-Riccati and
SOI-Riccati converge. But simulations show that the actual
filters do not. This leads one to investigate the relation be-
tween the modified Riccati recursions derived in [1, 2] and
the actual error performance of the filters. In this paper, we
precisely try to answer this question. We present simulation
results which seem to indicate that the optimal nonlinear fil-
ter (approximated by a Particle filter [8–10]) obeys the mod-
ified Riccatis of [1, 2] while the SOI-KF and MLQ-KF di-
verge. This is quite surprising in that the Riccatis which are a
pure artifact of the Gaussianity assumption predict the perfor-
mance of the optimal nonlinear filter even when the Gaussian
assumption clearly does not hold. We also present a lower
bound on the performance of the optimal nonlinear filter. The
bound takes the form of a Riccati and is derived using a pos-
terior Cramer-Rao bound developed in [11]. The next section
introduces the problem setup and notation.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the linear dynamical system:

x(n + 1) = A(n)x(n) + w(n) (1)
y(n) = h(n)x(n) + v(n) (2)

where x(n) ∈ R
d is the state, y(n) ∈ R is the observa-

tion, and w(n) ∈ R
d and v(n) ∈ R are uncorrelated Gaus-

sian white noises with zero means and covariancesQ(n) and
R(n) � σ2

v(n), respectively. The initial state, x(0), of the
system, is uncorrelated with both w(n) and v(n).
We use the same problem setup as that used in [1, 2]. We

consider the sensor network configuration in which the fusion
center has sufficient power to broadcast its predicted output
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and the corresponding error covariance to its sensors. Sensors
are assumed to have limited power and hence their transmis-
sion of information should be limited. Here, we assume that
the energy required for receiving messages is much less than
that for transmitting.
Once a scheduling algorithm is in place, at each time

instant, a sensor makes a measurement y(n) and com-
putes the innovation ε(n) = y(n) − ŷ(n|n − 1), where
ŷ(n|n − 1) = hx̂(n|n − 1) together with the variance of
the innovation σ2

ε (n) = h(n)P (n|n − 1)hT (n) + R(n) are
received by the sensor from the fusion center with x̂(n|n−1)
being the one step predictor of the state. [1, 2] propose meth-
ods to quantize ε(n) and use the quantized innovations to
update the state estimate.
Though simple and elegant, the filters developed in [1, 2]

can cause the state estimate error to diverge as will be shown
shortly using examples. We then propose a Particle filter algo-
rithm to approximate the optimal nonlinear filter and surpris-
ingly, we observe that its error covariance follows the modi-
fied Riccati recursion developed in [1, 2].

3. BACKGROUND

Let the normalized innovation, ε(n) = ε(n)
σε
, be quantized as

b(n) =

{
0 −z1 < ε(n) ≤ z1

Sign(ε(n))zi zi < |ε(n)| ≤ zi+1
(3)

with the convention that zN+1 = ∞. Then the multiple level
quantized Kalman filter (MLQ-KF) of [2] can be expressed as
follows

x̂(n|n) = x̂(n|n − 1) +
fN(n)P (n|n − 1)hT (n)√
hP (n|n − 1)hT (n) + R(n)

P (n|n) = P (n|n − 1) − 2

N∑
k=1

(φ (zk) − φ (zk+1))
2

Q (zk) − Q (zk+1)

×P (n|n− 1)hT (n)h(n)P (n|n − 1)

h(n)P (n|n − 1)hT (n) + R(n)
(4)

where

fN (n) =

N∑
k=1

Sign (b(n)) Ik (b(n))
φ (zk) − φ (zk+1)

Q (zk) − Q (zk+1)

φ (x) =
1√
π

exp

(
−x2

2

)
, Q (x) =

∫ ∞

x

φ (x) dx

One can recover the Sign of innovation Kalman filter (SOI-
KF) of [1] by setting N = 1 and z1 = 0.

4. PARTICLE FILTER

The Particle filter here adopted to using signs of innovations
{b(n)} to estimate the state vector, is given by

Alg. Particle Filter

1. Set n = 0. For i = 1, · · · , N , initialize the particles,
xi (0| − 1) ∼ P0(x0) and set x̂(0| − 1) = [0, · · · , 0]T

2. At time n, set b(n) = Sign (y(n) − hx̂(n|n − 1)).

3. Calculate the importance weights,

wi(n) = Q

(
−b(n)

h
(
xi(n|n − 1) − x̂(n|n − 1)

)
σv(n)

)

4. Measurement update

x̂(n|n) =
1

N

N∑
i=1

wi(n)xi(n|n − 1)

5. Resample N particles with replacement accoding to,

Prob
(
xi(n|n) = xj(n|n − 1)

)
= wj(n|n − 1)

where the normalized weights are given by

wj(n|n − 1) =
wj(n|n − 1)∑N
i=1 wi(n|n − 1)

6. For i = 1, · · · , N , predict new particles according to,

xi(n + 1|n) ∼ p
(
xn+1|xi(n|n)

)
7. Set x̂(n + 1|n) = A(n)x̂(n|n). Also, set n = n + 1
and iterate from step 2.

Step 3 is obtained as follows, .

b(n) = Sign (hx(n) + v(n) − hx̂(n|n − 1))

wi(n) = Prob (b(n) = ±1|x(n), b(0 : n − 1))

= Prob (v(n) ≷ −h (x(n) − x̂(n|n − 1)))

= Q

(
∓h

(
xi(n|n − 1) − x̂(n|n − 1)

)
σv(n)

)
(5)

The above algorithm can be trivially adapted to handle the
case of multiple quantization levels. Note that the algorithm
can be optimized in a number of ways to use far fewer parti-
cles. But, in this work, we are only interested in using Particle
filtering to approximate the optimal nonlinear filter.

5. COUNTER-EXAMPLES

We present two examples in this section.

1. A stable linear system for which both the MLQ-KF and
SOI-KF diverge.
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2. A stable linear system for which the error covariance
of SOI-KF seems to converge but does not follow the
SOI-Riccati.

Interesting thing about these examples is that the Particle filter
converges and follows the SOI-Riccati while SOI-KF does
not. Monte Carlo simulations of the error variance of the SOI-
KF, MLQ-KF and the Particle filter are shown in Fig. 1 and
Fig. 2. In both figures, the x-axis denotes time n and the
y-axis denotes E‖x(n) − x̂(n|n)‖2 = trace (P (n|n)). The
filter used to obtain x̂(n|n) is evident from the context.

5.1. Example 1

Consider a linear time invariant system of the form (1) with

the following parameters: A =

⎛
⎝ 0.95 1 0

0 0.9 10
0 0 0.95

⎞
⎠, Q =

2I3, h =
(
1 0 2

)
, R � σ2

v = 2.5 and P0 = 0.01I3, where
Im denotes anm×m identity matrix. Note that the eigen val-
ues of A, (0.95, 0.9, 0.95) are all less than 1. Fig. 1(a) com-
pares the Monte Carlo simulations of the SOI-KF and Particle
fiter with the SOI-Riccati. It also shows the posterior Cramer-
Rao lower bound for this problem, the details of which will be
discussed in Section 6. The Riccati recursion associated with
the full information Kalman filter is also plotted for compar-
ison. Fig 1(b) shows divergence of the MLQ-KF with 4 lev-
els of quantization (−z2,−z1, z1, z2) where z1 = 0.38 and
z2 = 1.24.
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Fig. 1. In (a), SOI-KF clearly diverges while Particle filter con-
verges to the SOI-Riccati. Posterior Cramer-Rao bound is also
shown. From (b), MLQ-KF with 4 levels of quantization also di-
verges. Experiments show that MLQ-KF diverges with 6 levels of
qantization as well but converges to MLQ-Riccati with 8 levels.

5.2. Example 2

Consider the following set of parameters

A =

⎛
⎜⎜⎝

0.95 1 0 0
0 0.9 7 0
0 0 0.6 2
0 0 0 0.95

⎞
⎟⎟⎠, Q = 2I4, h =

(
1 0 1 0

)
,

R � σ2
v = 2.5 and P0 = 0.01I4. In this case too, note that

A is stable. Fig. 2(a) compares the Monte Carlo simulations
of SOI-KF and Particle fiter with the SOI-Riccati. The plot
indicates that the SOI-KF doesn’t diverge for this problem
but it doesn’t follow the SOI-Riccati while the Particle filter
does. Fig 2(b) shows divergence of theMLQ-KFwith 4 levels
of quantization as mentioned above.
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(a) SOI-KF and Particle filter
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Fig. 2. In (a), SOI-KF seems to converge but doesn’t follow SOI-
Riccati while Particle filter converges to the SOI-Riccati. Posterior
Cramer-Rao bound is also shown. From (b), MLQ-KF with 4 levels
of quantization diverges. Experiments show that MLQ-KF with 6, 8
and 10 levels of quantization diverge too.

6. POSTERIOR CRAMER RAO BOUND

Since we are interested in estimating the state using the signs
of innovations, we treat bn � b(0 : n) as the vector of mea-
sured data. Let p (x(n),bn) be the joint probability desnity of
the pair (x(n),bn), and let g (bn) be a function of bn, which
is an estimate of x(n). The PCRB on the estimation error has
the form

P (n|n) � E{(g(bn) − x(n)) (g(bn) − x(n))T } ≥ J−1
n
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where Jn is the d × d Fisher information matrix with the ele-
ments

Jn(i, j) = E

(
−∂2 log p (x(n),bn)

∂xi(n)∂xj(n)

)
i, j = 1, · · · , d

where xi(n) is the ith component of the d-dimensional vector

x(n). Using the notation 
Θ =
[

∂
∂Θ1

, · · · , ∂
∂Θr

]T

, ΔΘ
Ψ =


Ψ
T
Θ we can write

Jn = E{−Δ
x(n)
x(n) log p (x(n),bn)} (6)

It was shown in [11] that Jn satisfies the following recursion

Jn+1 = D22
n − D21

n

(
Jn + D11

n

)−1
D12

n (7)

where

D11
n = AT (n)Q(n)−1A(n), D12

n =−AT (n)Q(n)−1=[D21
n ]

T

D22
n = Q−1+E{−Δ

x(n+1)

x(n+1)
log p(b(n+1)|x(n+1),bn)} (8)

Consider the second expression in (8). From (5) we have

p (b(n + 1)|x(n),bn) = Q
(
− b(n+1)h(x(n+1)−x̂(n+1|n))

σv

)
where x̂(n+1|n) = E (x(n + 1)|bn). Upon straightforward
differentiation, we get

−Δ
x(n+1)
x(n+1) log p (b(n + 1)|x(n + 1),bn)

= hT h
σ2

v

(
zn+1

φ(zn+1)

Q(−zn+1)
+

(
φ(zn+1)

Q(−zn+1)

)2
)

︸ ︷︷ ︸
α(zn+1)

(9)

where zn+1 = b(n+1)h(x(n+1)−x̂(n+1|n))
σv

. Define αn+1 =
E (α(zn+1)). We can then write (7) as follows

Jn+1 = Q−1+
hT αn+1h

σ2
v

−Q−1AT (Jn+AQ−1AT )−1
AQ−1 (10)

Applying matrix inversion lemma, we get
“

Q−1−Q−1A(Jn+AT Q−1A)−1
AT Q−1

”
−1

=AJ−1
n AT +Q (11)

Applying matrix inversion lemma again to (10) and using
(11), we get

J
−1
n+1 = AJ−1

n AT +Q−
(AJ−1

n AT +Q)hT h(AJ−1
n AT +Q)

σ2
v

αn+1
+h(AJ

−1
n AT +Q)hT

(12)

Note that this has the form of the traditional Riccati recursion.
From its structure, it is easy to see that it predicts the error
performance of the full information Kalman filter applied to a
modified system whose observation noise variance at time n−
1 is scaled by a factor of 1

αn
compared to the original. Simple

analysis shows that the functionα(z) ∈ (0, 1)∀z ∈ R. Hence,
αn which is the average of α(zn), defined in (9), also lies in
(0, 1). So, scaling by 1

αn
only increases observation noise.

Hence the Riccati obtained above is strictly bounded below
by the error performance of the full information Kalman filter
applied to the original system. Though (12) is a non-trivial
bound, it is not analytically tractable to compute αn. Monte
Carlo simulations of (12) are presented in Fig. 1 and Fig. 2.

7. CONCLUSIONS

We demonstrated that, contrary to conventional wisdom, the
error performance of the SOI-KF and MLQ-KF do not gener-
ally follow the modified Riccati recursions developed in [1,2].
Surprisingly, simulations seem to suggest that these modified
Riccatis predict the error performance of the optimal nonliear
mean-square error filter (which we have here approximated
by a Particle filter). Demonstrating whether this is truly the
case or not seems worthwhile of further scrunity.
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