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ABSTRACT

We develop energy-efficient, adaptive distributed transforms for
data gathering in wireless sensor networks. In particular, we con-
sider a class of unidirectional transforms that are computed as data
is forwarded to the sink along a given routing tree and develop a
tree-based Karhunen-Loève Transform (KLT) that is optimal in that
it achieves maximum data de-correlation among this class of trans-
forms. As an alternative to this KLT (which incurs communication
overhead in order to learn second order data statistics), we propose
a backward adaptive filter optimization algorithm for distributed
wavelet transforms that i) achieves near optimal performance and ii)
has no communication overhead in learning statistics.

Index Terms— Adaptive Filters, Data Compression, Wavelet
Transforms, Wireless Sensor Networks

1. INTRODUCTION

Wireless sensor devices (sensor nodes) are extremely power limited,
especially since most sensor nodes are battery powered. Thus in
order to extend the lifetime of a Wireless Sensor Network (WSN)
it is important to develop efficient algorithms for data gathering, so
that data can be delivered to a sink or base station with high quality
while requiring minimal power consumption at the nodes.

In this context, in-network distributed transforms, e.g., [1, 2, 3,
4] and references therein, have long been considered an attractive
tool since they exploit the fact that data being gathered has to be
routed over multiple hops from sensor to sensor and spatial data cor-
relation exists across sensors. These transforms exploit existing spa-
tial correlation in data in order to reduce the number of bits to be
transmitted as data is routed towards the sink.

Our previous work [3, 5] has shown that i) the choice of a routing
tree is important, as it affects both the transport costs and the num-
ber of bits required to represent the data, and ii) it is more efficient
to compute the transform without any “backward” communications,
i.e., so that all operations are performed as data flows to the sink, a
principle we call unidirectional computation. Specifically, the trans-
form in [5] is constructed on a routing tree such that each node uses
data from its children and parent to transform its own. Thus, a trans-
mission schedule is defined to allow each node to collect data from
its descendants before it processes and forwards its own data. This
eliminates “backward” communications.

Given that typically sensors are not necessarily placed on a reg-
ular grid, it is useful to consider transforms that can adapt to spe-
cific characteristics of the networks. Broadly speaking two types
of network-adaptive transforms have been proposed in the literature:
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those that are “data-dependent”, i.e., exploit statistical correlations in
the data, and those that are “structure-dependent”, i.e., are based on
“structural” information about the network (e.g., relative distances
between nodes). A recent example of a data-dependent transform
is the distributed Karhunen-Loève Transform (KLT) [2], which can
be easily applied to WSN. This transform is useful for compression
since a KLT achieves maximum data de-correlation [6]. However,
the resulting transform is not unidirectional. Instead the network
must be separated into clusters, cluster-heads designated in each
cluster, then nodes forward data to their cluster-heads that in turn
compute the transform and forward coefficients to the sink. This is
inefficient since many nodes will need to transmit data away from
the sink. This method also incurs a learning cost to discover and
disseminate the correlation structure.

Examples of the second type of network-adaptive transforms in-
clude those that use structural information in the network to design
fixed (non-data adaptive) transforms. Thus, there is no learning cost.
In the wavelet transform proposed in [4] using wavelet lifting [7],
relative location information is used to design prediction filters at
nodes that give more weight to data from closer neighbors and less to
neighbors further away. However, unidirectional computation is not
guaranteed for this transform since the transform is not developed
along routing paths. The unidirectional wavelet transform proposed
in [5, 8] exploits spatial correlation across neighbors in a routing tree
by using prediction filters that employ simple averages.

For coding purposes, in order to maximize overall performance
it is important to maximize the amount of data de-correlation.
Structure-dependent approaches are only efficient in this sense
when the correlation in the data is also structure-dependent, e.g.,
correlation is inversely proportional to distance. Ideally, we want
to construct unidirectional transforms that can be adapted to the
underlying data in a distributed manner with no learning cost.

The main goal of this work is to develop distributed unidirec-
tional transforms that use spatial data statistics to maximize the
amount of data de-correlation with little to no learning cost. This
raises one natural question, i.e., how to best use statistics to de-
correlate data in the network. Since we wish to minimize the cost
of training we require that each node in the network adapt its own
coding strategy based only on the data it can observe. Thus, as-
suming that data is routed to a base station via a routing tree, a
given node can only observe its own measurements and those of its
descendants in the tree. In the first part of this paper, we assume that
each node knows the second order data statistics corresponding to
all its descendants in the routing tree. Based on this we develop a
tree-based KLT that is computed as data is routed towards the sink.
This transform gives the best possible representation when we do
not allow any backward communications (e.g., we do not allow the
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sink to transmit back to the nodes complete second order statistics
for the whole network). No such KLT has been proposed to the best
of our knowledge. Note that in this transform a significant amount
of learning is necessary in order to produce a reliable estimate of the
necessary statistics.

As a pratical alternative, we consider unidirectional tranforms
that use spatial prediction filters to de-correlate data and adapt these
filters to data statistics over time in a distributed manner with virtu-
ally no learning cost. Adaptive wavelet decompositions using lift-
ing have been proposed for image processing applications. In [9],
both the length of each prediction filter and the filter coefficients are
adapted to data by solving a least squares problem. However, when
applying this idea to a WSN the sink must know the coefficients and
lengths of the filters that nodes use in order to invert the transform
and so nodes must transmit these values along with the data, result-
ing in some communication overhead. The method in [10] adapts
filters with no learning cost by using an adaptive filter run over con-
secutive predicted pixels with a fixed weight vector applied to a fixed
set of neighbors. Since nodes in a WSN will generally have a dif-
ferent number of neighbors, a fixed weight vector cannot be applied.
Instead, we use prediction filters that can be applied to an arbitrary
set of neighbors and use adaptive filtering to tailor these filters to
data statistics at each node (over time) using data from the node and
its neighbors. Thus, we can achieve distributed filter adaptation with
virtually no learning cost.

This paper is organized as follows. Section 2 describes the tree-
based KLT. Section 3 provides an algorithm to estimate the optimal
lifting filters with no learning cost. Section 4 evaluates the perfor-
mance of the proposed algorithms. Section 5 concludes the work.

2. TREE-BASED KLT

It is clear that if communication costs could be ignored the KLT
could be used to provide maximum decorrelation for the measure-
ments in a WSN. However, this is not practical given the communi-
cation cost involved in obtaining global correlation statistics. As an
alternative, the distributed KLT [2] is designed specifically for im-
plementation on a WSN, but requires many backward transmissions
and so is also inefficient when considering total communication cost.
To avoid such backward transmissions, we restrict ourselves to con-
sidering only unidirectional transforms, such that nodes must trans-
mit data towards the sink along a routing tree in the order specified
by some transmission schedule. Since data flows only in the direc-
tion of the sink, a given node can only use information provided by
its descendants in order to achieve decorrelation.

We propose a unidirectional tree-based KLT (T-KLT), where we
apply the KLT (whitening) on data collected at each node, i.e., data
collected from the node and its descendants. Transform coefficients
are then encoded and forwarded to each parent node. Each parent
then applies an inverse KLT (coloring) on the KLT coefficients re-
ceived from each of its children to recover the original data, applies
a KLT to this original data and then encodes and forwards the coef-
ficients to its parent. This preserves unidirectional computations and
is repeated until all coefficients are collected at the sink. In order
for this to work in practice, each node must know the second-order
statistics of its sub-tree. Thus, there will be some learning cost as-
sociated with discovering and disseminating these statistics.

Essentially, each node applies a KLT to the data collected from
its sub-tree. Thus, the T-KLT achieves maximal data de-correlation
on such data thus leading to fewer bits needed to represent it. This re-
duces the amount of information nodes must transmit over each hop,
thereby reducing the total communication cost in exchange for some

added computational cost (which is far lower than the cost of com-
munication). In fact, for a given routing tree, under the constraint
of unidirectional computation, T-KLT achieves better de-correlation
of the data collected from each node’s sub-tree than any other uni-
directional transform. Thus, when the cost of training is not con-
sidered, T-KLT serves as an upper bound on the performance of any
distributed, unidirectional transform.

We now establish some notation. For each node n in an N node
network with routing tree T = (V, ET ), x(n) is a single measure-
ment and Subtree(n) is the set of nodes in the sub-tree below n in-
cluding node n itself. Moreover x[n] is the data vector containing all
measurements from Subtree(n). Kn is the correlation matrix of the
nodes in Subtree(n), ρn denotes the parent of n, Cn is the set of all
1-hop children of n and |Cn| is the number of children of n. Finally,
depth(n) denotes the number of hops from node n to the sink.

2.1. Unidirectional T-KLT

The unidirectional T-KLT algorithm has two phases. The training
phase computes whitening and coloring matrices from the correla-
tion matrix of the network. We assume that each node n has the
knowledge of correlation matrix Kn of Subtree(n) (i.e. of all nodes
in its subtree). For each Kn we compute the matrix En of eigen-
vectors that diagonalizes it, i.e., Et

nKnEn = Σn, where Σn is the
diagonal matrix of eigenvalues of Kn. The whitening matrix for this
node in the non-singular case is Σ

−1/2
n Et

n and the corresponding
coloring matrix is EnΣ

1/2
n . These are denoted as Hn and Gn re-

spectively. For the singular case, we use the corresponding reduced
rank matrix. Whitening matrix Hn is used to decorrelate the data
transmitted by node n so it is computed and stored in node n. The
parent of node n (ρn) receives these transmitted coefficients and uses
coloring matrix Gn of node n to recover the original data. Thus, Gn

is computed and stored in node ρn. In short, each node n computes a
whitening matrix Hn for its subtree using Kn and a coloring matrix
GCn(k) using KCn(k) for the subtree of each child Cn(k) of n.

The second phase is forwarding and is detailed in Algorithm 1.
Data forwarding progresses from nodes of maximum depth down to
nodes one hop from the sink, i.e., nodes at depth k forward their
data only after all nodes at depth k + 1 have transmitted theirs. If
node n is a leaf node then it does not have any children. Hence
|Cn| = 0 and Subtree(n) = n, thus x[n] = x(n). The whitening
matrix Hn is just a scalar, yielding coefficient wn = Hnx(n) which
is encoded and sent to ρn. If node n is not a leaf node, |Cn| >
0 and so node n must first receive and decode wCn(m) for each
child Cn(m). Since node n has stored coloring matrix GCn(m) for
each child Cn(m) (as done in the training phase), it can recover the
original data of each child as x[Cn(m)] = GCn(m)wCn(m). The
original data obtained from all children nodes is then concatenated
with the measurement at node n to produce data vector x[n], i.e.,
x[n] =

`
x(n),xt[Cn(1)], . . . ,xt[Cn(|Cn|)]

´t
, and this vector is

whitened as wn = Hnx[n]. Finally, wn is encoded and forwarded
to next hop in the routing tree. The vector wn usually has very few
non-zero values as compared to data vector x[n]. Hence the number
of bits required to encode wn is less than that required for x[n]. This
is the source of savings in the T-KLT.

2.2. Learning Cost for T-KLT

Training could be done by forwarding raw measurements to the sink
for a certain period of time. During this period each node trains its
correlation matrix using the measurements it receives from its sub-
tree. The training phase could also be done by an online estimation
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of correlation matrices at each node and forwarding those matrices
to the next hop along with the transformed coefficients. In either
case there is some time-lag before each node can efficiently start de-
correlating data. In the latter case there is an additional overhead of
sending correlation matrices that grow in size near the sink. More-
over the cost of training grows quadratically with the increase in the
size of the network, i.e., in order to estimate an N × N correlation
matrix we require at least N2 observations of an N dimensional data
vector. Thus the advantages of forwarding un-correlated data to the
sink may be offset by training cost. In addition, the algorithm un-
dergoes transform and inverse transform at each node in the routing
path and so it also suffers from the propagation of quantization error.

Algorithm 1 Tree-KLT Forwarding Algorithm

1: for k = max(depth) : −1 : 1 do
2: Ik = {m ∈ V : depth(m) = k}
3: for each n ∈ Ik do
4: for each m = 1 to |Cn| do
5: Receive and Decode wCn(m) from mth child of n

6: x[Cn(m)] = GCn(m)wCn(m)

7: end for
8: x[n] =

`
x(n),xt[Cn(1)], . . . ,xt[Cn(|Cn|)]

´t

9: wn = Hnx[n]
10: Encode wn and Transmit to next hop
11: end for
12: end for

3. DISTRIBUTED FILTER OPTIMIZATION

As a practical alternative to the T-KLT, we propose a method for
adaptively changing the predictive filtering operations used within
standard coding schemes. This adaptation is performed in a dis-
tributed manner with virtually no learning cost. We first discuss how
to find optimal spatial prediction filters, particularly ones that min-
imize the energy in each residual prediction error. Suppose we are
given an arbitrary encoding scheme that uses a prediction step to
de-correlate data (such as DPCM or a lifting transform). For each
predicted node n, we want to find a linear estimate of x(n), given by
x̂(n) =

P
i∈Nn

pn(i)x(i) for some set of neighbors Nn, that mini-
mizes the residual prediction error d(n) = x(n)−x̂(n). The optimal
solution for each predicted node n is the vector p∗n that minimizes
E[d2(n)], e.g., the Wiener-Hopf solution [11], and is a function of
the correlation RX(i, j) = E[x(i)x(j)] between nodes i, j ∈ Nn.

As discussed in Section 2.2, estimation of such statistics is costly
in terms of delay, computation and communication. Alternatively,
we can use adaptive filters to estimate the optimal spatial prediction
filters over time with no learning cost since i) they converge to the
optimal filters for stationary data, ii) they do not require estimates of
data statistics and iii) the filtering done at one node can be replicated
at any other node (e.g., the sink) given the same prediction errors
and initial prediction filters. As such, we can apply an adaptive filter
at each node to estimate the optimal prediction filters without for-
warding additional information to the sink. Note that it still takes
time for the filters to adapt to the data well enough to produce good
predictions. Thus, there will be a small learning cost for nodes to
initially “train” their filters and also to “re-train” their filters when
data statistics change (i.e., the overall encoding rate will be higher
during training periods, during which filters have not yet converged
to a state that matches current data statistics.) However, this method
avoids the overhead to communicate data statistics for the T-KLT.

There are a variety of adaptive filters we can choose from, but

the step-size parameter μ often must be chosen based on some data
dependent parameters to ensure filter convergence. We generally
will not know such parameters, so the most suitable choice is a
normalized least mean squares adaptive filter since μ need not be
specified but is instead adapted as the filter is adapted. Some no-
tation is now established. Suppose nodes measure data at times
t1, t2, . . . , tM . Let x(n, m) denote the data at node n captured at
time step tm. The N × M prediction coefficient matrix for node
n is given by pn, where column i, i.e., pn(:, i), is the prediction
vector at the i-th time step at node n. The adaptive filter at each
prediction node n is then computed, from m = 1 to m = M , via
d(n, m) = x(n, m) − pt

n(Nn, m)x(Nn, m) and the filter update
equation pn(Nn, m + 1) = pn(Nn, m) + μ

x(Nn,m)d(n,m)
xt(Nn,m)x(Nn,m)

.
This technique can be easily applied to the unidirectional lift-

ing transform in [8]. In this transform, at each level in the wavelet
decomposition, nodes are split into even and odd sets, P and U ,
respectively, along some tree T . Then, for each node n ∈ P the pre-
diction filter pn(:, m) is applied to data from its neighbors to form a
prediction x̂(n, m) and the detail coefficient d(n, m) = x(n,m) −
x̂(n, m) is computed and forwarded to the sink. Similarly, for each
n ∈ U , an update filter is applied to data at n using detail coefficients
from Nn to generate smooth coefficient s(n, m).

Minor modifications of the algorithms in [8] are needed to main-
tain unidirectional computation. Under that transform, each odd
node uses data from its parent and children for prediction but only
receives data from its children. This is problematic since an adaptive
filter can only be run when all data it uses is available. This can be
addressed by requiring that each n ∈ P forward raw data one hop
to its parent, at which point all data used to adapt pn is available.
Each n ∈ U must also forward raw data two hops to avoid repeat-
edly de-coding and encoding coefficients. This results in essentially
the same communication cost as that in [8]. The sink can reverse
this processing by inverting the smooth coefficients to get x(n, m)
for each n ∈ U , and then can run the adaptive filter for each l ∈ O
using d(l, m) to find the prediction filter used at each time step m,
at which point it can invert the prediction step to recover x(l, m).

We can also apply these adaptive filters to a simple tree-based
DPCM (T-DPCM). As data is forwarded to the sink, each node n
will have access to its children’s data and so can predict its own
data x(n,m) with data from its children then encode and forward
the difference, i.e., compute x̂(n, m) =

P
k∈Cn

pn(k, m)x(k,m),
then encode and forward d(n, m) = x(n, m) − x̂(n, m). As in the
wavelet encoding case, each node will also forward raw data one step
for the reasons discussed above. The prediction vectors pn(:, m) are
then adapted over time and the sink would reconstruct the original
data in a manner similar to that done for the wavelet transforms.

4. EXPERIMENTAL RESULTS

The tree-based wavelet transform [8] is used to compare the
“structure-dependent” filter designs of [4, 8] against our distributed
optimization method. We also compare these against the T-KLT
and T-DPCM with adaptive filters. The adaptive filters are run over
time using data collected at each node and at neighboring nodes.
The sequential entropy coding scheme in [12] is used to encode the
transform coefficients of each node. Energy consumption is mod-
eled as in [13], where the cost to transmit k bits a distance D is equal
to C = cpkD2 Joules with cp a constant of proportionality. Further-
more, in those models the energy consumed in receiving k bits and
performing computations is negligible compared to transmission
costs and so we assume zero cost for reception and computation.
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For our experiment, we use a set of empirical data taken from
19 sensors from a habitat monitoring deployment [14] on the Great
Duck Island. The routing topology is shown in Figure 1(a). The
performance curves in Figure 2 compare the trade-off between total
energy consumption (in Joules) and reconstruction quality, i.e., SNR,
for each method. T-DPCM with adaptive filters has the worst perfor-
mance because most nodes only use data from at most one neighbor
to de-correlate their own data. In the case of the wavelets, each node
uses data from its parent and children. The average prediction filters
of [8] obviously have the worst performance among wavelet-based
approaches. The planar prediction filters of [4] outperform the aver-
age filters and the distributed filter optimization scheme we propose
here is second only to the T-KLT. However, in practice there will be
significant learning costs that we do not account for here. Due to
a lack of space, we have omitted results for the artificial data used
in [5, 8]. The relative performance is very similar for that data.

We also examine the transient behavior of our filter optimization
scheme. Fig. 1(b) shows SNR values of the reconstructed data at
each measurement time with comparable energy consumption for
the T-KLT and our method. Our method converges to SNR values
similar to the T-KLT (i.e., is nearly optimal) in about 40 iterations.
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5. CONCLUSIONS

Optimal unidirectional transforms have been developed for WSN.
A tree-based KLT is presented that achieves the maximum de-
correlation among all possible unidirectional transforms on a rout-
ing tree but incurs significant learning overhead to estimate the
necessary statistics. As an alternative, we also proposed a filter op-
timization method for lifting transforms and T-DPCM that achieves
performance close to the T-KLT with virtually no learning cost.
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