
TRACKING OF RANDOM NUMBER OF TARGETS WITH RANDOM
NUMBER OF SENSORS USING RANDOM FINITE SET THEORY

Andreas M. Ali, Ralph E. Hudson, Kung Yao

UCLA, Los Angeles, CA 90095-1594

ABSTRACT

Variation in the number of targets and sensors needs to be ad-

dressed in any realistic sensor system. Targets may come in or

out of a region or may suddenly stop emitting detectable sig-

nal. Sensors can be subject to failure for many reasons. We

derive a tracking algorithm with a model that includes these

variations using Random Finite Set Theory (RFST). RFST is

a generalization of standard probability theory into the finite

set theory domain. This generalization does come with addi-

tional mathematical complexity. However, many of the ma-

nipulations in RSFT are similar in behavior and intuition to

those of standard probability theory.

Index Terms— Tracking, Multisensor systems, Set the-

ory, Array signal processing, Object detection

1. INTRODUCTION

Recently, there has been a continuing increase in popularity

and interest to engineer small low cost devices that are capa-

ble of sensing, data processing, and communication known

as wireless sensors [1, 2]. By virtue of its cost, a wireless

sensor network (WSN) allows the possibility of monitoring

complex natural environmental states with a finer spatial res-

olution (i.e., more devices per area). As demands for power

efficiency and complexity continue to grow, research and de-

velopment continue to search for better ways to manage, an-

alyze and combine information that changes rapidly and are

very error prone.

Tracking targets is one aspect of monitoring that carries

a wide interest from bio-complexity study to military surveil-

lance. In reality, the targets often enter and exit the monitored

area and can sometimes fail to transmit (or hide) its signal.

The sensors can also fail from lack of power, hardware fail-

ure, software failure, or any combinations of these. The dif-

ficulties of modeling these variations via standard probability

theory are reduced from a random finite set theory (RFST)

perspective. RFST is a generalization of standard probability

theory into a set theory with finite elements [3–5]. The flexi-

ble structure of a set has made RFST easier to model variation

in both the number of elements and the value of the elements

jointly. For example, a no-target case can easily be modeled

by an empty set, which may have non-zero probability.

To simplify design, we will assume the sensor deployment

is on a uniform grid over a region of interest (ROI). Each sen-

sor is a self-contained, battery operated, small computer that

has a wireless capability for communication to a fusion center.

These type of sensors have begun to emerge in the market and

will become more readily available over time. Being battery

operated, power management becomes a major issue. The

overall system will benefit significantly if we can minimize

communication as much as possible.

This article is organized into seven sections. The next

two sections will define the observation and motion models

in terms of random sets. Section 4 and 5 will be dedicated to

deriving the set densities. Section 6 will discuss the simula-

tion result for target tracking and the importance of detecting

sensor failure in the system, and we will end with a brief con-

clusion.

2. OBSERVATION MODEL

Let the set Σ denotes the collective observations received at

the fusion center. Given N sensors, we can express Σ as

∪N
i=1(Σi × i), where Σi is the observation from sensor i, and

i is the index. Since the internal sensor noise is independent

between sensors, the probability set density for Σ becomes

fΣ =
∏N

i=1 fΣi
. To describe the event for each sensor i, we

write

Σi = Σ′
i ∩ Fi, (1)

Σ′
i = {Zi} ∩Di, (2)

where Σ′
i is the sensor’s observation, Fi is the sensor failure

state, and Di is the sensor detection state. Zi ∈ R is the

detected signal power with form Zi = hi(Θ) + W , where W
is a random noise with density fW (w), and Θ is a random set

describing the target geo-kinematic properties. Supposed that

M is the measurement space, then we can choose a discrete

random subset Di of M such that Di = ∅ with probability

1− pdi
and Di = M with probability pdi

. The sensor failure

state can also be written in the similar manner to describe

failing state (Fi = ∅) or normal state (Fi = M ).

To conserve power, we define a threshold τ , such that

Σ′
i =

{ ∅, if Zi < τ,
{Zi}, if Zi ≥ τ.

(3)
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This will limit the sensor’s communication to the fusion cen-

ter only when it is reasonably significant. Then from (2)

and (3), Di is described completely by the thresholding (i.e.

pd = P (Zi ≥ τ)). The function h(.) describes the relation-

ship between the target position and the detected signal am-

plitude. In our case, we assume that the source emits a signal

with power P0 when measured at a reference distance d0 in a

free space, which is given by

hi(∅) = 0, (4)

hi(θ) =
√

P0d2
0/d2(θi, θ), (5)

where we denote hi(θ) � hi({θ}), θ = [x, y, ux, uy]T is the

target position and velocity, θi = [xi, yi]T is sensor i posi-

tion, and d(θi, θ) =
√

(x− xi)2 + (y − yi)2 is the distance

between the sensor i and the target. Throughout this article T

will denote the transpose operation, and we will use θ as the

shorthand notation for the set {θ} to reduce notation clutter.

For sequential indexing, we will denote the time by aug-

menting the subscript with a time index t, so Σi,t will denote

the observation of sensor i at time t. We will further assume

that the signal is received by the farthest sensor before the

next epoch.

3. MOTION MODEL

When a target exists, we assume it follows a constant velocity

with a small random perturbation and a density of fV (v). For

each epoch, we want to update the Θ and all the Fi. The

update equation can then be written as

Θt+1 = SΘ(Θt) ∪BΘ(Θt) (6)

SΘ(∅) = ∅, (7)

SΘ(θt) =
{ ∅, with probability 1− ps

s(θt), with probability ps
, (8)

BΘ(∅) =
{ ∅, with probability 1− pb

b, with probability pb
, (9)

BΘ(θt) = ∅, (10)

s(θt) =

⎡
⎢⎢⎣

x + ux + vx

y + uy + vy

ux + vx

uy + vy

⎤
⎥⎥⎦

T

, (11)

where BΘ and SΘ describe the birth and the surviving set

function respectively. If a target survives, s(θt) describes its

state transition behavior. If a birth occurs, b describes the

geo-kinematic probability of the target when it appears with

the density fb(b). x and y denotes the position of the target,

and ux and uy denotes its component velocities. vx and vy

are the random perturbation, which is described by fV (v).
For each Fi,t, the update equation is given by

Fi,t+1 = SF (Fi,t, Θ) ∪BF (Σ′
i,t), (12)

BF (Σ′
i,t) =

{ ∅, if Σ′
i,t = ∅,

M, if Σ′
i,t �= ∅, (13)

SF (−) =
{

qi(θ), if Fi,t = M,Θ = θ,
Fi,t, otherwise,

(14)

where SF models the sensor survival, and BF is the set in-

dicator modeling the sensor birth (or recovery from failure).

qi(θ) is a random set that models the decision to tag sensor

failure when an estimate exists and sensor i provides no de-

tection. Intuitively, if a target passes very close without any

report, the sensor has probably failed, and a sensor far away

from the target should not be tagged as failing. To describe

this, we set qi(θ) = ∅ if hi(θ) < τ ′, where τ ′ = τ + ασ, and

α ≥ 0. Under normal conditions, each sensor’s observation

is perturbed by an internal noise with variance σ2. We want

to set α so that SF is insensitive to most internal noise pertur-

bation. If we set α = 0, all sensors that failed to report will

be incorrectly tagged as failing. α around 2 - 3 are reasonable

values to ignore most sensor noise perturbation. In this way,

only an unreasonably large deviation will activate the sensor

failure tagging.

4. OBSERVATION DENSITIES

Before we can use the model defined in Section 2, we will

need to derive the observation set densities. Recall that the

belief function is defined as βZ(C) � P (Z ⊆ C) and the

measurement space M is such that βZ(M) = 1. We begin by

writing the belief function of (1) as

βΣi,t
(C|Θt, ∅) = P (Σi,t = ∅), (15)

βΣi,t
(C|∅, M) = 1− pfai

+ pfai
Pa, (16)

βΣi,t
(C|θt, M) = 1− pdi

(θt) + pdi
(θt)Pb, (17)

where βΣi,t
(C|A1, A2) � βΣi,t

(C|Θt = A1, Fi,t = A2),
Pa = P (Σi,t ⊆ C|C �= ∅, Θ = ∅, Fi,t = M), Pb =
P (Σi,t ⊆ C|C �= ∅, Θ = θ, Fi,t = M), and the notation pfa,

“false-alarm” probability, is needed to distinguish (16) from

(17). By applying set derivatives and evaluating the results at

C = ∅ [5], the set densities are given by

fΣi
(∅|Θt, ∅) = 1, (18)

fΣi
(z|Θt, ∅) = 0, (19)

fΣi
(∅|∅, M) = 1− pfai

, (20)

fΣi
(z|∅, M) = pfai

fc(z), (21)

fΣi
(∅|θt, M) = 1− pdi

(θt), (22)

fΣi
(z|θt, M) = pdi

(θt)fs(z), (23)

where fΣi(C|A1, A2) � fΣi(C|Θt = A1, Fi,t = A2). If

a target exists, fs(z) is the target’s observation probability

distribution. Similarly, if a clutter exists, fc(z) is the clutter’s

observation probability distribution.

For the sensor noise distribution, we will assume fW (w) ∼
Nw(0, σ2). Although this is a simplistic assumption for real
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applications, it helps to reduce equation complexity. Conse-

quently, pfai = Q(τ/σ), and pdi(θ) = Q((τ − hi(θ))/σ),
fc(z) ∼ Nw(0, σ2) , and fs(z) ∼ Nw(z, σ2), where

Q(γ) =
∫ ∞

γ
(2πσ2)−1/2 exp(−2x2/σ2)dx is the right-tail

probability of Gaussian random variable. Clearly, more real-

istic noise pdf can also be used.

5. MOTION DENSITIES

Similarly, we also need to derive the set densities from the

model described in Section 3. The belief function for (6) can

be written as

βΘt+1(C|Θt = ∅) = 1− pb + pbPc, (24)

βΘt+1(C|Θt = θt) = 1− ps + psPd, (25)

where Pc = P (Θt+1 ⊆ C|C �= ∅, Θt = ∅), and Pd =
P (Θt+1 ⊆ C|C �= ∅, Θt = θt). Following the same proce-

dures, the set densities can be obtained as

fΘt+1(∅|∅) = 1− pb, (26)

fΘt+1(θt+1|∅) = pbfb, (27)

fΘt+1(∅|θt) = 1− ps, (28)

fΘt+1(θt+1|θt) = psfs(θt+1|θt), (29)

where fb and fs are as described in Section 2.

For the sensor failure state, we can write the belief func-

tions as

βFi,t+1(C|−)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−pq+pqPe, if

⎧⎨
⎩

Fi,t = M,
Θ = θ,
BF = ∅,

P (Fi,t+1 =M), if BF =M,
P (Fi,t+1 =Fi,t), otherwise,

(30)

where Pe = P (Fi,t+1 ⊆ C|C �= ∅, Fi,t = M,Θ = θ,BF =
∅). Since Fi,t+1 takes only discrete values, the set probability

mass functions are given as

fFi,t+1(∅|M, θ, ∅) = pq(θ), (31)

fFi,t+1(M |M, θ, ∅) = 1− pq(θ), (32)

fFi,t+1(M |Fi,t, Θ, M) = 1, (33)

fFi,t+1(∅|Fi,t, Θ, M) = 0, (34)

fFi,t+1(M |∅, Θ, ∅) = 0, (35)

fFi,t+1(∅|∅, Θ, ∅) = 1, (36)

fFi,t+1(M |M, ∅, ∅) = 1, (37)

fFi,t+1(∅|M, ∅, ∅) = 0 (38)

where pq(θ) = Q(τ ′ − hi(θ)/σ).

6. SIMULATION

In a real system, each sensor has a separate processing unit,

so the complexity of the whole system is well distributed. To
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Fig. 1. All sensors behave normally

practically simulate the entire sensor suite, we will use parti-

cle filtering approach using the sequential importance resam-

pling method [6].

The region of interest (ROI) is a 200 x 200 square meter

with 100 sensors deployed on a uniform grid. For reference,

we place the axis (0, 0) at the center of the ROI. The target,

when measured at d0 = 1 meter, emits a signal with power

intensity of P0 = 800. The noise variance for each sensor is

σ2 = 0.4, and the τ is set to 1.6. Other parameters are given

as α = 1, ps = 0.92, pb = 0.2, fV (v) ∼ N (0, 1)
Let’s consider a scenario where a target repeatedly pass

through the same path. When all sensors behave normally,

the system is able to track the target properly (e.g. Fig. 1).

If some sensors in the proximity of the path fail, the estimate

can be very erroneous (e.g. Fig. 2). Normal non-transmitting

sensors carry inherent information that the target is far from

its position. Hence, when a nearby sensor fails to transmit,

the estimate becomes inaccurate. If the sensor failure detec-

tion is employed, the system can avoid large errors by tagging

sensors that might be failing. The effect of automatic sensor

failure detection can be seen in Fig. 3(a). After the failed

sensors are tagged, future tracking efforts can use only the

remaining sensors as seen in Fig. 3(b).

Sometimes, the target stops emitting its signal or purpose-

fully hides its presence from the sensors. The analysis on tar-

get’s behavior is beyond the scope of this article; however, we

still want to detect if this event occurs. In Fig. 4, the system

begins to track a target that suddenly disappear. Four time in-

stants later, a target appears at a different starting point. Note

that the second trace can be a different target from the first.

Notice also that sensors that are mistakenly tagged as failing

does not degrade much of the system performance. Once a

tagged sensor sends information, the system can immediately

use it and simultaneously lift the tag off the sensor. Informa-

tion is lost only if a working sensor does not send the data due
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Fig. 2. Undetected sensor failures that cause erroneous track-

ing results
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Fig. 3. Tracking behavior with automatic sensor failure de-

tection scheme.

to thresholding, though it is often a negligible amount.

7. CONCLUSION

Simultaneous randomness in the number of targets and sen-

sors along with their geo-kinematic information can be mod-

eled methodically using RFST. This modeling system allows

a systematic derivation of densities that can be analyzed using

bayesian recursive prediction-filter methodologies.

The simulation results have exemplified the importance of

sensor failure detection in a real system. When failed sensors

incorrectly interpreted as non-reporting working sensor, the

tracking estimates show severe degradation. Once the sensor

failure detection is operating, the system can quickly avoid

large errors by tagging sensor that might be failing. Future

targets can then be tracked correctly based on the remaining

active sensors.

A randomly missing target can also be detected using the

same scheme. We also have shown that the system can track

the number of targets and simultaneously estimate the geo-

kinematic information of the target within the ROI.
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Fig. 4. Tracking appearing and disappearing target

8. REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci, “A survey on sensor networks,” IEEE Com-
munications Magazine, vol. 40, no. 8, pp. 102116, August

2002.

[2] D. Culler, D. Estrin, and M. Srivastava, “Overview of

sensor networks,” IEEE Computer Magazine, vol. 37,

pp. 4149, August 2004.

[3] Ronald P. S. Mahler, Statistical Multisource-Multitarget
Information Fusion, Artech House, 2007.

[4] Matti Vihola, Random Sets for Multitarget Tracking and
Data Fusion, Licentiate thesis, Tampere University of

Technology, 2004.

[5] I. R. Goodman, Ronald P. S. Mahler, and Hung T.

Nguyen, Mathematics of Data Fusion, Kluwer, 1997.

[6] Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and

Tim Clapp, “A tutorial on particle filters for on-line non-

lineaer/non-gaussian bayesian tracking,” IEEE Transac-
tions on Signal Processing, vol. 50, no. 2, pp. 174–188,

Feb 2002.

2220


