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ABSTRACT

The average consensus in wireless sensor networks is achieved

under assumptions of symmetric or balanced topology at ev-

ery time instant. However, communication and/or node fail-

ures, as well as node mobility or changes in the environment

make the topology vary in time, and instantaneous symmetry

of the links is not guaranteed unless an acknowledgment pro-

tocol or an equivalent approach is implemented. In this paper,

we evaluate the convergence in the mean square sense of a

well-known consensus algorithm assuming a random topol-

ogy and asymmetric communication links. A closed form

expression for the mean square error of the state is derived as

well as the optimum choice of parameters to guarantee fastest

convergence of the mean square error.

Index Terms— Wireless sensor networks, random topolo-

gies, asymmetric links, mean average consensus, mean square

convergence.

1. INTRODUCTION

Consensus algorithms are iterative algorithms where neigh-

boring nodes interact with each other to reach an agreement

regarding a certain value of interest. These algorithms are

well suited for distributed estimation of parameters in wire-

less sensor networks (WSNs), as the nodes can make a deci-

sion without the necessity of conveying the information to a

fusion center. We focus on the time-varying topology model

of the average consensus algorithm by Olfati-Saber and Mur-

ray in [1]. Important contributions based on this model can be

found on literature (see [2] and references therein). When the

topology of the network is random however, the convergence

of the algorithm should be studied in probabilistic terms. For

instance, Hatano and Mesbahi use stochastic stability notions

in [3] to study the convergence in probability of the consensus

algorithm over random graphs. Kar and Moura in [4] relate

mean square convergence of the consensus algorithm to the
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second smallest eigenvalue of the average Laplacian matrix.

In both contributions, the topology is assumed symmetric at

every time instant. For networks with non-symmetric random

topologies, Tahbaz-Salehi and Jadbabaie in [5] use ergodic-

ity properties to show a necessary and sufficient condition for

almost sure convergence to a common value. Rabbat et al.

in [6] show that the average consensus can be achieved with

both symmetric and asymmetric links under certain parameter

conditions, but at the cost of increasing the convergence time

and thus, the overall energy consumption of the network.

In this paper we study the mean square convergence of the

algorithm in [1] for WSNs with random time-varying topolo-

gies. The constraint on instantaneous link symmetry in [3, 4]

and the constraints in [6] are relaxed, leading to a faster con-

vergence of the algorithm. Since the physical parameter to be

estimated is modelled as a random variable (r.v.), the conver-

gence of the state value is evaluated with respect to its statisti-

cal mean. The novelty in the analysis is that, assuming equal

probability of connection for all the links, a closed-form ex-

pression for the mean square error (MSE) of the state is de-

rived, which allows us to determine the convergence condi-

tions of the algorithm and the value of the design parameters

that minimize the convergence time.

The paper is organized as follows. In Section 2 we intro-

duce some basic definitions of graph theory and in Section 3

we present the problem statement. In Section 4 we study the

MSE of the state vector and present our main result. In Sec-

tion 5 we analyze the convergence conditions and the asymp-

totic MSE. Simulation results and conclusions are included

in Section 6 and 7 respectively.

2. GRAPH THEORY CONCEPTS

The information flow among the nodes of a network can

be described by a directed graph G = (V , E ) where V =
{1, · · · , N} is the set of vertices (nodes) and E is the set of

edges (links) eij , ∀ i, j = {1, · · · , N}, such that the infor-

mation flows from node j to node i [7]. We assume G has

no loops or multiple edges. The set of neighbors of node i
is denoted Ni = {j ∈ V : eij ∈ E }, and represents the set of
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nodes sending information to node i. The adjacency matrix

of G , denoted A ∈ R
N×N , has entries equal to

[A]ij =
{

1 if eij ∈ E ∀i, j = {1, · · · , N}
0 otherwise.

The degree matrix D ∈ R
N×N is a diagonal matrix whose

entries are the sum of the incoming edges for each node, i.e.

[D]ii=
∑N

j=1[A]ij . The Laplacian matrix of the graph is de-

fined as L=D−A, with corresponding eigenvalues denoted

λi, i={1,· · ·, N}, and smallest eigenvalue λ1=0. If the graph

is connected, λ1 has algebraic multiplicity one and L is an ir-

reducible matrix [8]. When the topology of the network varies

randomly with time, the communication among the nodes can

be described by a dynamic graph G (k) = {V ,E (k)}, where

E (k) is the set of edges at time k and V is the constant set

of nodes. In this paper, we assume the Erdős-Rényi random

graph model [9], where the existence of a link between any

pair of nodes of the network is probabilistic, i.e. eij ∈ E (k)
with probability 0<p≤ 1. The resulting adjacency matrix at

time k is therefore a random matrix with entries

[A(k)]ij =
{

1 with probability p
0 with probability 1−p

and mean1 Ā = P, where P is the probability matrix with

entries [P]ij = p ∀i �= j and [P]ii = 0. The instantaneous

Laplacian is also random and given by L(k)=D(k)−A(k)
with mean L̄ = D̄−P, D(k) denoting the degree matrix at

time k.

3. CONSENSUS IN RANDOM TOPOLOGIES

Consider a WSN composed of N nodes indexed with i =
{1,· · ·, N} and a scalar value xi(k) defined as the state of

node i at time k. The state is initialized at each node at time

k =0 with the value of a single measurement and evolves in

time according to the difference equation in [1]. Let x(k)∈
R

N×1 denote the vector containing all the states of the net-

work at time k > 0. Assuming a random time-varying topol-

ogy, the evolution of x(k) can be written in matrix form as

follows

x(k)=W(k − 1)x(k − 1) (1)

where the weight matrix is given by

W(k)=I−εL(k), (2)

I ∈ R
N×N is the identity matrix, L(k) is the instantaneous

random Laplacian defined in Section 2 and ε is a positive

constant equal for all the iterations (the range of values of

ε that guarantee the convergence of (1) will be determined

in Section 5). The set of matrices {W(k),∀k} in (2) are

by construction independent of each other and row stochastic

1The bar denotes expected matrix.

but not necessarily symmetric (since L(k) may have asym-

metric links). Due to the Perron-Frobenius theorem [8], they

have largest eigenvalue |λ1(W(k))|=1 and associated right

eigenvector an all-ones vector 1 ∈ R
N×1. However, the ex-

pected matrix of W(k) is symmetric and row-stochastic since

W̄= I− εL̄. Let x(0) = [x1(0) x2(0) · · · xN (0)]T be the

vector of measurements taken by the sensors, modeled as in-

dependent identically distributed (i.i.d.) r.v. with mean xm

and variance σ2
0 . The iterative algorithm in (1) can be rewrit-

ten as

x(k) = Mw(k)x(0), (3)

where Mw(k)=
∏k

l=1 W(k−l). Due to the random nature of

both x(0) and the matrix Mw(k), we study the convergence

of (3) analyzing the MSE of x(k) with respect to the mean av-

erage consensus given by xm= 1
N 1T

E[x(0)]1=xm1, where

E[.] denotes expected value.

4. MEAN SQUARE ANALYSIS

The MSE of the state vector x(k) with respect to the mean

average consensus averaged over N nodes is defined as

MSE(x(k)) =
1
N

E

[∥∥x(k) − xm

∥∥2

2

]
. (4)

Replacing equation (3) in (4) and expanding the expression

yields

MSE(x(k))=
1
N

E
[
xT (0)MT

w(k)Mw(k)x(0)

−xT (0)MT
w(k)xm− xT

mMw(k)x(0)− xT
mxm

]
The matrix W(k) and therefore Mw(k), are assumed inde-

pendent of x(0) ∀k. Considering that E[Mw(k)] = W̄k is

a symmetric row-stochastic matrix, the expression above can

be rewritten as follows

MSE(x(k)) = tr
((

σ2
0I + x0xT

0

)
Rw(k)

) − xT
0 W̄kxm

−xT
mW̄kx0 + xT

mxm (5)

where x0=E [x(0)] and

Rw(k) = E
[
MT

w(k)Mw(k)
]

(6)

is a symmetric, nonnegative and double stochastic matrix

∀k. Since E [x(0)] = xm1 and considering further that

1T Rw(k)=1T , equation (5) reduces to

MSE(x(k)) =
σ2

0

N
tr (Rw(k)) . (7)

We present now our main result in the following theorem:

Theorem 1. Consider the iterative algorithm in (1) with N
nodes, probability of connection 0 < p ≤ 1 equal for all the
links and i.i.d. initial values x(0) with mean xm and variance
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σ2
0 . The MSE of the state vector averaged over N nodes in

(4) is equal to

MSE(x(k)) = σ2
0

(
b

1 − a + b
− (a − 1)

1 − a + b
(a−b)k

)
(8)

with
a = 1 − 2(N−1)pε + 2(N−1)pε2 + (N−1)(N−2)p2ε2

b = 2pε − Np2ε2.
(9)

Proof. Expanding the expression of Rw(k) in (6) and apply-

ing the linearity properties of the trace and the expected value

operators2, equation (7) can be rewritten as follows

σ2
0

N
tr(Rw(k)) =

σ2
0

N
tr(Rw(k−1) · Cw) (10)

where Cw =E
[
W(k)WT (k)

]
, equal ∀k. After some matrix

manipulations, Cw can be analytically expressed as

Cw =I − 2εL̄ + ε2E
[
L(k)LT (k)

]
. (11)

Assuming equal probability of connection 0<p≤1 for all the

links we have that

[L̄]ij =
{

(N−1)p for i=j
−p for i �=j

(12)

and

E

[
L(k)LT (k)

]
ij

=

{
2(N−1)p + (N−1)(N−2)p2 i=j
−Np2 i �=j

(13)

Replacing (12) and (13) in (11), we obtain a matrix Cw of the

form

Cw = b · 11T + I(a−b) (14)

with a and b as in (9). Replacing equation (14) in (10) yields

σ2
0

N
tr(Rw(k)) =

σ2
0

N

(
tr(Rw(k−1)11T b + Rw(k−1)(a−b))

)
=

σ2
0

N
(Nb + tr(Rw(k−1)(a−b)))

where we have used the row-stochastic property of Rw(k).
Substituting the trace above recursively we obtain

σ2
0

N
tr(Rw(k)) =

σ2
0

N
· N

(
k−2∑
l=0

b(a−b)l + a(a−b)k−1

)

= σ2
0

(
b

1 − a + b
− (a − 1)

1 − a + b
(a−b)k

)
and the proof is completed.

The MSE expression in (8) allows us to compute the mean

square error of the state at every time instant offline, as it re-

quires knowledge of general parameters only. Since a and b in

(9) are rather cumbersome, in the following section we eval-

uate (8) analytically, to provide a better understanding of the

MSE in terms of both convergence and asymptotic behaviour.

2The proof of (10) and the properties of Rw(k) are not included here

because of lack of space.

5. FASTEST CONVERGENCE AND ASYMPTOTIC
ANALYSIS OF THE MSE

In this section, we determine the dynamical range of ε that

guarantees the convergence of (4) and the value of ε that gives

fastest convergence of the MSE in (8). Then, we study the

impact of N and p on the asymptotic MSE.

Recently, the authors in [4] relate the convergence in the

mean square sense to the second smallest eigenvalue of the

average Laplacian. On the other hand, the authors in [5] relate

the almost sure convergence of the consensus algorithm to the

second largest eigenvalue of the average weight matrix. In our

case however, the convergence time of the MSE, and therefore

the choice of ε, are related to the term (a− b), since from

equation (8) we observe that the MSE converges whenever

(a− b)k → 0 as k → ∞. For given N and p, consider the

function

f(ε) = a − b (15)

with a and b as defined in (9). We observe that (f(ε))k → 0
as k→∞ whenever |f(ε)|<1. It is not difficult to check that

f(ε) is a quadratic function, nonnegative ∀ε. The dynamical

range of ε that guarantees |f(ε)|<1 corresponds to the inter-

val (0, 2ε∗), where ε∗ is the value that minimizes the function

f(ε). We can now state the following corollary:

Corollary 1. For a given number of nodes N and a given
probability 0 < p≤ 1, the value of ε that minimizes the func-
tion f(ε) in (15), with a and b defined in (9) is given by

ε∗ =
N

2(N − 1) + (N − 1)2p + p
. (16)

Summing up, if we choose ε inside the interval (0, 2ε∗) with

ε∗ as defined in (16), we can guarantee that as k → ∞ the

averaged MSE of the state vector in (4) will converge. Under

this assumption, the limit of the MSE expression in (8) is

lim
k→∞

MSE(x(k)) = σ2
0

(
b

1 − a + b

)
.

Now, substituting for the values of a and b above yields

lim
k→∞

MSE(x(k)) =
σ2

0

N

(
2N − N2pε

2N − (2(N−1) + (N−1)2p + p) ε

)

=
σ2

0

N
· g(ε). (17)

Clearly, the function g(ε) approaches 1 as ε approaches 0, so

the MSE at each node tends to σ2
0/N as the value of ε ap-

proaches 0. Our contribution with respect to [6] is that (17)

provides the deviation of the MSE with respect to the opti-

mum σ2
0/N when ε does not tend to 0. That is, equation

(17) shows that whenever ε is larger than 0, the asymptotic

MSE will be higher than σ2
0/N by a factor equal to g(ε). Ac-

tually, it can be seen that g(ε) increases monotonically for

ε ∈ (0, 2ε∗) and tends to ∞ as ε approaches the upper limit
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2ε∗. In order to gain intuitive insight on the impact of N and

p on the asymptotic MSE, we assume that ε is sufficiently

small to approximate g(ε) using a first-order Taylor series ex-

pansion, such that g(0)=1 and g′(0)= N−1
N (1−p). Note that

in the proximity of ε=0, the limit in (17) behaves as

lim
k→∞

MSE(x(k)) ≈ σ2
0

N

(
1 +

N−1
N

(1 − p)ε
)

.

This result shows that the impact of the number of nodes to

the asymptotic MSE becomes negligible for a relatively high

number of nodes. On the contrary, the higher the probability

of connection of the links, the closer the asymptotic MSE will

be to the optimum σ2
0/N .

6. SIMULATIONS

The analytical results obtained in the previous sections are

supported here with computer simulations. We simulate a

WSN composed of N = 20 nodes randomly deployed in a

squared area, where each entry of the vector x(0) is mod-

eled as an independent Gaussian r.v. with mean xm =20 and

variance σ2
0 = 5. The probability of connection is set equal

to p = 0.4. A total of 100 thousand independent realizations

were run to obtain the empirical MSE, where the position of

the nodes and the connection probabilities were kept fixed for

all the realizations while a new Laplacian matrix was gener-

ated in every iteration.

Figure 1 shows the empirical MSE computed with (4)

(dotted lines) along with the theoretical MSE derived with (8)

(patterns), plotted in dB as a function of the iteration index

for different values of ε. The benchmark value of σ2
0/N is in-

cluded in solid line. As expected, the empirical values match

the theoretical values found using equation (8). The optimum

ε∗ = 0.1094 is computed with (16). In the first curve we let

ε=0.01and in the second one ε=0.2. The curve for ε= ε∗ is

depicted with ’*’. Clearly, choosing ε = ε∗ we obtain fastest

convergence of the MSE, as less than ten iterations are re-

quired. We observe that the smallest ε gives the slowest con-

vergence but the reached value is closest to the benchmark. In

the cases of higher ε (0.1094 and 0.2), the gap corresponding

to the term g(ε) of equation (17) can be clearly observed.

7. CONCLUDING REMARKS

We have shown that a closed form expression for the MSE of

the state with respect to the mean average consensus in (4)

can be found whenever the links have the same probability of

connection. The convergence in the mean square sense of (1)

is assured for appropriate values of ε, whose dynamical range

and optimum value have been established. The deviation of

the asymptotic MSE with respect to the optimum σ2
0/N can

be computed offline since it depends on the number of nodes,

the ε parameter and the probability of link connection only.
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Fig. 1. Empirical and theoretical MSE of the state in dB as a

function of the iterations for p =0.4 and different values of ε.
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