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ABSTRACT

Accurate target localization is an important task in various
commercial and military applications. One way to achieve
this goal is to use the time-of-arrival (TOA) or time-delay-
of-arrival (TDOA) information observed at multiple dis-
tributed sensors. On the other hand, there is a great need to
use moving sensors to form a radar platform with synthetic
apertures. In this paper, we consider the problem of target
localization based on the range information estimated from
two-way time-of-flight (TW-TOF) at multiple synthetic ar-
ray locations, where the position of these synthetic array
locations is subject to certain random errors. The noncon-
vex estimation problem is approximated by a convex opti-
mization problem using the semidefinite relaxation (SDR)
approach. Simulation results show that the proposed estima-
tor provides mean square position error performance close
to the Cramer-Rao lower bound.

Keywords: Radar signal processing, position estimation,
optimization methods, semidefinite relaxation.

1. INTRODUCTION

Accurate target localization is an important task in vari-
ous applications, including wireless communications, navi-
gation, and surveillance. In some applications such as cellu-
lar systems and sensor networks, this goal can be achieved
by utilizing time-of-arrival (TOA) or time-delay-of-arrival
(TDOA) information observed at multiple fixed sensors that
are distributed over a region [1, 2, 3]. In many surveillance
applications, however, it is rather feasible to use a mov-
ing radar platform that estimates the range from the two-
way time-of-flight (TW-TOF) at each time, and the target
location information is then estimated using the range es-
timates at multiple locations. Examples of such applica-
tions include energy-based localization, target tracking in
urban canyons, and through-the-wall radar systems [4, 5].
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When there is no error in the sensor positions, e.g., when
the sensors have fixed locations and their positions can be
precisely estimated, such problem can be solved using least
squares (LS) estimation methods [2, 3]. On the other hand,
in many situations, particularly when a moving platform
is involved, there may be random errors in the sensor po-
sitions that would introduce bias in target locations. For
example, sensor platform mounted on autonomous aerial
or ground vehicles may not have precise location informa-
tion due to their maneuvering and limitations on the GPS
accuracy, which degrades especially in high multipath and
jamming environments. In [6], robust target localization for
a sensor network platform is considered to exploit TDOA
information. In this paper, we address the estimation prob-
lem of the target location in such situations based on the
TW-TOF or TOA information. We derive the nonlinear
and nonconvex maximum likelihood (ML) formulation, and
then convert it to a convex optimization problem by using
the semidefinite relaxation (SDR) approach.

2. PROBLEM FORMULATION

Consider a moving mono-static radar system that measures
the range of a target at M different positions through di-
rect line-of-sight measurements. The position of each radar
measurement is assumed to be known up to certain accu-
racy. That is, the location information is subject to some
bounded random errors. Denote si and s̃i, respectively, as
vectors representing the estimated and true position of the
radar at the ith measurement, 1 ≤ i ≤ M . Depending
on applications, the position information can be described
using either two-dimensional (2-D) or three-dimensional (3-
D) coordination system. The relationship between the es-
timated and true location information of the ith radar po-
sition is described by

s̃i = si + Δsi ∈ Ai(ε), (1)

where

Ai(ε) = {si + ei, ‖ei‖ ≤ ε}, (2)

and ε is the maximum error in the radar locations.
Define the location of the target of interest as x, and the

velocity of wave propagation as c. Then, the true value of
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the TW-TOF between the ith radar location and the target
is determined by

τ̃i =
2

c
r̃i =

2

c
‖x − s̃i‖, (3)

where
r̃i = ‖x − s̃i‖ (4)

is the true one-way distance between the ith radar position
and the target. In the presence of noise, the observed TW-
TOF becomes

τi =
2

c
‖x − s̃i‖ + ni, (5)

where the noise components n1, · · · , nM are assumed to
be independent and identically distributed (i.i.d.) Gaus-
sian processes with mean zero and variance matrix σ2

τIM

with IM being the M × M identity matrix. Denote s̃ =
[̃sT

1 , · · · , s̃T
M ]T , where T denotes transpose of a matrix or a

vector. Then, the ML estimate of the target and sensor
locations is expressed as

[x, s̃] = arg min
x,̃s

M∑
i=1

[
2

c
‖x − s̃i‖ − τi

]2

. (6)

The above equation can be equivalently written as

min
x,̃s

M∑
i=1

[r̃i − ri]
2 , (7)

where
ri =

τic

2
(8)

is the estimated range between the ith radar position and
the target, i = 1, · · · , M . Denote

r̃ = [r̃1, · · · , r̃M ]T , and r = [r1, · · · , rM ]T , (9)

Then, (7) can be simplified as

min
x,̃s

‖r̃ − r‖2,

s.t. r̃2
i = ‖x − s̃i‖2 = (x − s̃i)

T (x − s̃i).
(10)

3. OPTIMIZATION APPROACHES

3.1. Optimization Without Sensor Position Error

When there is no error in the radar positions, i.e., s̃ is
known, the above problem can be solved using semidefinite
relaxation (SDR) [2, 3, 6]. Note that

‖r̃ − r‖2 =

[
r
−1

]T [
IM r̃
r̃T r̃T r̃

] [
r
−1

]
. (11)

To linearize the formulations, we note that

r̃2
i = ‖x − s̃i‖2 =

[
s̃i

−1

]T [
IK x
xT xT x

] [
s̃i

−1

]
(12)

for i = 1, · · · , M , where K = 2 or 3 is the dimension of the
coordinate system, and define

w̃ = r̃T r̃ =

M∑
i=1

r̃2
i =

M∑
i=1

[
s̃i

−1

]T [
IK x
xT xT x

] [
s̃i

−1

]
.

(13)

We further introduce z = xT x to linearize the above ex-
pression. Thus, the ML problem expressed in (10) can be
relaxed as a linear and convex problem in (x, r̃, w̃, z) as

min
x,̃r,w̃,z

[
r
−1

]T [
IM r̃
r̃T w̃

] [
r
−1

]
,

s.t. w̃ =
M∑

i=1

[
s̃i

−1

]T [
IK x
xT z

] [
s̃i

−1

]
,

[
IM r̃
r̃T w̃

]
� 0,

[
IK x
xT z

]
� 0,

(14)

where the notation A � 0 means that A is positive semi-
definite. Note that, it was shown in [2] that the optimal
solution meets the requirement ri > 0 and thus such con-
straint is not necessary.

3.2. Optimization With Sensor Position Error

Now we consider the localization in the presence of radar
position errors. By assuming observations with i.i.d. noise,
the log-likelihood function of the target location can be ex-
pressed as

L(x) = − 1

2σ2
n

(r̃ − r)T (r̃ − r), (15)

where σn = στc/2. The above expression can be rewritten
as

L(x) = −
[

r̃
−1

]T

F

[
r̃
−1

]
, (16)

where

F =
1

2σ2
n

[
IM r
rT v

]
(17)

with

v = rT r. (18)

Because the constant factor (2σ2
n)−1 in (17) does not affect

the optimization, it can be ignored for formulation simplic-
ity. That is,

F =

[
IM r
rT v

]
(19)

is used hereafter. Thus, robust target localization by max-
imizing the worst-case likelihood function leads to the fol-
lowing formulation,

min
x

sup

{[
r̃
−1

]T

F

[
r̃
−1

]∣∣∣∣∣ ‖Δsi‖ ≤ ε, i = 1, · · · , M
}

.

(20)

By using the first-order Taylor expansion, r̃i can be ex-
pressed as

r̃i = ‖x − s̃i‖ = ‖x − si‖ − ΔsT
i (x − si)

‖x − si‖ + o(‖Δsi‖). (21)

Define

ei =
ΔsT

i (x − si)

‖x − si‖ . (22)
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From (1) and (2), it is obvious that |ei| ≤ ε. Let

r̂i = ‖x − si‖, r̂ = [r̂1, · · · , r̂M ], e = [e1, · · · , eM ]. (23)

Then, we can reformulate (20) as

min
x

sup

{[
r̂ − e
−1

]T

F

[
r̂ − e
−1

]∣∣∣∣∣ |ei| ≤ ε, i = 1, · · · , M
}

,

s.t. r̂i = ‖x − si‖.
(24)

To facilitate numerical optimization, we replace the box
constraints |ei| ≤ ε, i = 1, · · · , M , with an ellipsoid con-
straint ‖e‖ ≤ ρ = ε

√
M . Thus, the above expression be-

comes

min
x

sup

{[
r̂ − e
−1

]T

F

[
r̂ − e
−1

]∣∣∣∣∣ ‖e‖ ≤ ρ

}
,

s.t. r̂i = ‖x − si‖.
(25)

This can be further represented by

min
x

η

s.t. sup

{[
r̂ − e
−1

]T

F

[
r̂ − e
−1

]∣∣∣∣∣ ‖e‖ ≤ ρ

}
≤ η,

r̂i = ‖x − si‖.

(26)

The first constraint in (26) can be written as

eT e − ρ2 ≤ 0 ⇒

eT e − 2eT (r̂ − r) + r̂T r̂ − 2rT r̂ + v − η ≤ 0.
(27)

By using the S-procedure [7], the above implication holds
if and only if there exists a λ > 0 such that

[
(λ − 1)IM r̂ − r
(r̂ − r)T η − r̂T r̂ + 2rT r̂ − v − λρ2

]
� 0. (28)

Similar to the approaches used in Section 3-1, we linearize
the terms r̂T r̂ in (28) and the second constraint in (26) by
introducing

ŵ =

M∑
i=1

r̂2
i =

M∑
i=1

‖x − si‖2

=

M∑
i=1

[
si

−1

]T [
IK x
xT xT x

] [
si

−1

]
,

(29)

and z = xT x. Then, the SDR approach in the presence of

sensor position errors is formulated as

min
x,̂r,ŵ,z,λ

η

s.t.

[
(λ − 1)IM r̂ − r
(r̂ − r)T η − ŵ − 2rT r̂ + v − λρ2

]
� 0,

ŵ =
M∑

i=1

[
si

−1

]T [
IK x
xT z

] [
si

−1

]
,

[
IM r̂
r̂T ŵ

]
� 0,

[
IK x
xT z

]
� 0,

η ≥ 0, λ ≥ 0.
(30)

4. CRAMER-RAO LOWER BOUND

Under the assumption that the TOA measurement noise
and the radar location errors follow independent Gaussian
distributions, the log-likelihood function of the joint target
and node location is given by

L(x, s̃) = − 1

2σ2
n

(r̃ − r)T (r̃ − r) − 1

2σ2
s

(̃s − s)T (̃s − s)

= − 1

2σ2
n

M∑
i=1

(r̃i − ri)
2 − 1

2σ2
s

M∑
i=1

(̃si − si)
T (̃si − si),

(31)
where s = [sT

1 , · · · , sT
M ]T .

The Fisher information matrix can be defined as

J =

[
Jxx Jxs̃

JT
xs̃ Js̃s̃

]
. (32)

By noting (4), (9), and the fact E(r̃i − ri) = 0, where E[·]
denotes the statistical expectation operator, we have

Jxx = −E

[
∂2L(x, s̃)

∂x∂xT

]
=

M∑
i=1

Δi,

Jxs̃ = −E

[
∂2L(x, s̃)

∂x∂s̃T

]
= [Δ1, · · · , ΔM ]

Js̃x = −E

[
∂2L(x, s̃)

∂s̃∂xT

]
= JT

xs̃,

Js̃s̃ = −E

[
∂2L(x, s̃)

∂s̃∂s̃T

]
=

⎡
⎢⎢⎢⎢⎣

Δ1+
1

σ2
s

I2 O

. . .

O ΔM +
1

σ2
s

I2

⎤
⎥⎥⎥⎥⎦ ,

(33)
where

Δi =
1

σ2
n

(x − s̃i)(x − s̃i)
T

r̃2
i

. (34)

Using the partitioned matrix inversion, the Cramer-Rao
lower bound (CRB) of the variance of the target location
estimation is found as

cx = diag

{(
Jxx − Jxs̃J

−1
s̃s̃ JT

xs̃

)−1
}

. (35)
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5. SIMULATION RESULTS

Computer simulations are conducted to verify the effective-
ness of the proposed method. We consider a moving radar
platform mounted on a ground vehicle. As such, we use a
2-D coordinate system. As illustrated in Fig. 1, a stationary
or inanimate target is located at the origin, and the ground
vehicle moves around the target in two crossed roads. The
shortest distance from each road to the target is L = 30
m. The vehicle moves at a constant speed of 18 km/h (or
5 m/s). Assume that the time required for data acquisition
and processing is 2 s per visit. The effect of radar dis-
placement within each data set is ignored. We consider two
scenarios. In the first scenario, the vehicle moves from west
to east over the interval of length 2L = 60 m. In this case,
the overall observation time period is 12 s, yielding obser-
vations at 7 different positions. In the second scenario, the
vehicle moves from west to east, and then turns to south,
yielding an interval of length 4L = 120 m. In this case, the
overall observation time period is 24 s, and observations at
13 different positions are made. Each observed data set is
contaminated by the error in the radar positions and mea-
surement noise. The radar position error is described by
a zero-mean Gaussian distribution with variance σ2

s , and
the maximum position error at each position is bounded
by ε = 4σs. The measurement noise follows a zero-mean
Gaussian distribution with variance σ2

n.
Fig. 2 shows the root mean square error (RMSE) of

the estimated target position, overlayed with the CRB. The
SeDuMi toolbox [8, 9] was used to carry out the simulations,
and the results are further improved via local optimization
by applying a standard nonlinear optimization routine, e.g.,
SOLNP [10]. For each plot, we vary σn from 0 to 1 m, and
σs was chosen to be 0 m, 0.5 m, and 1 m, respectively.
Each result is obtained from 400 independent trials. All
the results obtained from the proposed method are very
close to the CRB. For Scenario I, the x and y directions
are asymmetric, and the estimation error in the y direction
appears to be higher. Scenario II is symmetric in the two
directions, and the increased number of radar positions help
reduce the estimation error in both directions.

6. CONCLUSIONS

We have investigated the problem of localizing a target us-
ing the two-way time-of-flight measurements operated in
a moving radar platform, which observes the target from
different positions. In particular, we have formulated the
problem in the context of robust worst-case target local-
ization with the consideration of errors in the radar obser-
vation positions. The nonlinear and nonconvex problem is
reformulated into a convex optimization problem through
semidefinite relaxation. Simulation results verified that the
target localization performance is very close to the Cramer-
Rao lower bound.
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