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ABSTRACT

Localizing micro cracks in critical components is crucial in
the field of continuous structural health monitoring. In this
paper, we utilize several signal processing and machine
learning techniques such as hierarchical clustering and
support vector machines (SVM) to process multisensor
acoustic emission (AE) data generated by the inception and
propagation of cracks. We present preliminary laboratory
results that explore the pairwise event correlation of AE
waveforms generated in the process of controlled crack
propagation, and use these characteristics for clustering AE.
By averaging the AE events within each cluster obtained
from hierarchical clustering, we compute super-acoustics
with higher signal to noise ratio (SNR) and use them in the
second step of our analysis for calculating the time of arrival
information (TOA) for crack localization. We utilize a SVM
classifier to recognize the so called P-waves in the presence
of noise by using features extracted from the frequency
domain for accurate earliest arrival detection. Preliminary
results show that our method has the potential to be a
component of a structural health monitoring system based on
acoustic emissions for instance for bridges.

Index Terms— Acoustic Emission, Crack Localization,
Hierarchical Clustering, Support Vector Machines.

1. INTRODUCTION

The collapse of the [-35W bridge in Minneapolis, Minnesota
USA in 2007, once again highlighted the need for continual
health monitoring of structures such as bridges. Harsh
loading, rapidly changing environmental conditions and
seismic events are significant sources of damage on these
structures. In general the damage is characterized as being
local such as cracks or global such as abrupt changes or
deviations from natural vibration characteristic of the
structure. Several systems are proposed in the literature for
monitoring the global damage in bridges and buildings by
using accelerometers interfaced with wireless sensor nodes
[1, 2, 3 and 4]. However, continuous health monitoring
process involves the examination of both global and local
damages. Currently, the local damages, such as cracks, on
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critical components are mainly inspected visually. This type
of inspection is slow and prone to human error. Therefore,
automated, fast and accurate techniques are needed to detect
the onset of local damage to prevent failure. Broadband
acoustic emission events can serve as a source of
information for the localization and characterization of
damage, particularly as caused by the initiation and
propagation of microcracks [3, 5 and 6]. Accurate detection
of these events and the location of cracks with appropriate
signal processing techniques may open new possibilities for
monitoring the health of critical structures such as bridges
and the provision of alarms related to the potential for
serious degradation of structural integrity in an automated
manner. In this paper, we describe novel signal processing
and machine learning techniques based on hierarchical
clustering and support vector machines to process
multisensor acoustic emission (AE) data generated by the
inception and propagation of cracks validated with
experimental results. In particular, our signal processing
framework targets to capture and process correlated events
as being generated by individually localized crack
mechanisms rather than randomly generated AEs distributed
within the specimen. A schematic diagram summarizing the
overall system is given in Fig.1.

The rest of the paper is organized as follows. In the next
section we describe our experimental paradigm to record AE
waveforms generated in the process of controlled crack
propagation. In the following section we summarize our
signal processing, feature extraction and machine learning
techniques for clustering AE signals and localizing the
cracks. Finally we provide experimental results on the
spatial distributions of AE events and compare them to real
damage locations.

2. ACOUSTIC EMISSION RECORDINGS

In this study the AE events were recorded during a surface
instability type of failure. A picture representing the
experimental setup is given in Fig.2. A prismatic rock
specimen, placed between two rigid vertical side walls and a
rigid vertical rear wall, is subjected to axial load applied in
y-axis through displacing rigid platens. The material is
supported in z-axis such that compressive force is generated
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Fig.1. The schematic diagram of the signal processing and
classification system.

passively. The rear wall in x-axis ensures that the lateral
deformation and spalling take place on the front, exposed
face of the specimen.

Four acoustic emission (AE) sensors were attached to
the exposed face using cyanoacrylate glue and their
positions (X, y, and z) were measured. Four other AE sensors
were fastened to the side walls of the apparatus. The eight
AE sensors have a frequency response from 0.1 - 1 MHz and
a sensor radius of approximately 3 mm. A high speed, eight
channel data acquisition system was used for AE recording.
The data acquisition system is equipped with four two-
channel modular transient recorders with 8-bit resolution
and a sampling rate of 20 MHz. AE data were acquired in a
more or less continuous fashion until 128 Kbytes of a
digitizer memory were filled; then the AE data were
transferred to the host computer, with approximately four
seconds of downtime. The entire waveforms are stored
automatically and sequentially with a time stamp. The
signals were preamplified (40 dB gain) and filtered
(bandpass 0.1 - 1.2 MHz) at hardware level prior to storage.
All recordings are triggered when the signal amplitude
exceeded a certain threshold on the first sensor. This sensor
is referred to as the “anchor” sensor in the rest of our paper
and is used for further processing. A sample recorded signal
is presented in Fig.3. In total, 2176 AE events were recorded
in the whole experiment. This number includes both real AE
and noise events.

3. CLUSTERING OF AE EVENTS

In practice the crack locations are inspected visually by
projecting the AE locations on a 2D surface where these
locations are computed from the time of arrival (TOA)
information at the sensors [7]. The time of arrival is
calculated by comparing the signal amplitude to a predefined
threshold where the earliest arrival generally related to the

Fig.2. The experimental setup for recording the AE events in
a surface instability type of failure.
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Fig.3. A sample AE event recorded from the first sensor that

triggers the whole data acquisition process.

P-wave as shown in Fig.3. This type of method produces
misleading TOA information if the signal is noisy, which is
always the case in real life situations. Therefore, in our data
analysis before applying the amplitude threshold, we aim to
increase the signal to noise ratio of the signal by capturing
correlated recordings and averaging grouped events. In
particular we applied a hierarchical clustering approach that
uses the cross correlation function computed between
different events.

As a first step we computed the cross correlation
function between all events on the signals acquired at the
anchor sensor. Then we constructed a correlation matrix that
keeps the maximum value of the absolute cross correlation
function between all event pairs. This correlation matrix was
used to build a hierarchical cluster - dendrogram [8]. The
dendrogram represented the nested correlation structure of
all AE events. This dendrogram was cut at level 0.3 in order
to cluster those events which have cross correlations larger
than 0.7. At this level 338 clusters were obtained with two or
more members. Acoustic emission events related to a
particular cluster are shown in Fig. 4. This step was followed
by computing the averages of each cluster to obtain what we
call “super-acoustic” signals. Indeed due to averaging, the
random components in the data are suppressed and repetitive
components will remain the same. Therefore, the super
acoustics will have higher signal to noise ratio (SNR) than
individual AE events. We also note that a similar approach
was utilized for processing gene expression profiles in [9]. It
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Fig.4. The overlap plot of AE events related to a particular
cluster.
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Fig.5. (a) Sample waveforms and spectra of 32 sample time
windows preceding the P-wave, centered around P-wave and a 64
sample window after post P-wave. (b) Sample raw data and
spectra of noise segments that may be recognized as a P-wave.

has been shown that averaged gene expression data within
clusters have more predictive power than those from
individual gene expressions. In our study by increasing the
SNR of AE events we expect to localize the arrival times
more accurately.

4. P-WAVE DETECTION WITH SVM

As indicated in our crack localization framework, the TOA
information is extracted from the P-waves. The detection of
P-waves by using simple thresholds becomes difficult in the
presence of noise or abrupt spikes in the data. In order to

() (b)
Fig.6. The subband tiling of the AE spectrum. The bandwidth
was wider in high frequencies and narrower in lower frequencies.
On the right the scatter plot of the first two principal components.
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Fig.7. Sample cluster average and detected arrivals from 8
sensors. The TOA is marked with a vertical line on each channel.

localize the P-waves accurately we investigated the time and
frequency domain properties of the AE data in short
windows around the P-wave location. We observed that the
P-waves were generally located in lower frequency bands.
This wave is followed by large oscillations. Sample
waveforms and spectra related to a typical P-wave (center)
and those windows preceding and following this wave is
presented in Fig.5. Same analysis related to a segment that
may be recognized as a pseudo P-wave is also given. We
observed that the pseudo P-waves were not followed by
large oscillations. In addition their frequency spectrum
indicates that these waveforms had certain amount of energy
in higher frequency bands.

Based on these observations 7 subband energy features
were extracted from each time window spectrum which was
computed with fast Fourier transform. The widths of the
subbands were not uniform. The lowest two bands had the
same bandwidth and following subbands were twice as wide
as the preceding subband. The subband tiling is shown in
Fig.6. This setup focused more to the lower frequency bands
since the energy of the signal was concentrated in this range.
The spectrum of the noise (pseudo P-waves) had jagged
spikes. In contrary the spectra of the P-waves were smooth.
We also computed the variance of the derivative of the
spectrum of each time window as another feature to capture
this difference. Together with subband features a 24
dimensional feature vector was constructed. In order to
explore the predictive power of these features we applied
principal component analysis. The scatter plot of real and
pseudo P-waves related to the first two principal components
is shown in Fig. 6 (b). On this 2D surface we observed that
extracted features were quite informative in distinguishing
real and pseudo P-waves.

Computing these features for each time point could be a
demanding process. In order to reduce the number of
candidate time points that will be tested for P-wave arrival,
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Fig. 8. The estimated locations of the AE events. Each green
circle represents the location of a particular cluster. The diameter

of the circle is proportional to the number of AE in the cluster.

first the signal was normalized and then the envelope of the
signal was computed with Hilbert transform. When the
envelope of the signal exceeded a predefined threshold then
that time point was tested for P-wave arrival. We empirically
found that a threshold value of 0.5 was good enough to
localize most of the P-waves. The 24 dimensional feature
vector was fed to a linear support vector machine classifier
for final decision [10]. The main motivation for using an
SVM classifier is based on its robustness against outliers and
its generalization capacity in higher dimensions, which is the
result of its large margin. The support vector machine
classifier was trained by selecting around 25 sample AE
events from the non averaged data. The training feature
vectors for P-waves and noise sets were constructed from
this subset by manually marking the P-wave arrivals and
noise events that exceeds the predefined threshold. Sample
TOA estimates detected by a SVM classifier for a particular
cluster are visualized in Fig. 7. The horizontal dashed lines
represent the predefined threshold. Those time points where
the envelope of the signal was exceeded the threshold was
tested for P-wave arrival. The vertical blue lines represent
the detected P-wave arrivals. Note that although several
other time points exceeded the threshold the algorithm
successfully eliminated them.

5. RESULTS

After calculating the arrival information on each sensor
location, the algorithm in [7] was used to estimate the
location of the source in 3D. In Fig. 8 we visualize the
estimated source locations of the top 10 clusters in the X-Y
axis and a picture of the deformed specimen which
developed several cracks on the frontal surface. The
locations of AE sensors were marked with the black squares.
Each green circle represents the location of a particular
cluster. The size of each circle is proportional to the number
of AE events within the cluster. We note that the locations of
the AE events were correlated with the crack locations. Most
of the events were localized towards the free surface.
Interestingly the largest cluster was localized a few
millimeters away from the free surface of the specimen.
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6. CONCLUSION

In this paper we introduced novel approaches based on
hierarchical clustering and support vector machines for
clustering acoustic emission signals and detecting P-waves
for crack localization in the presence of noise. We presented
preliminary laboratory results that explore some of the
characteristics of AE waveforms generated in the process of
controlled crack propagation, and use these characteristics
for clustering AE and localizing the cracks. By averaging the
AE events within each cluster, we computed new acoustics
emission events with higher SNR. In the following step the
system extracted several features from the frequency domain
representation of averaged AE events and used them in
combination with a SVM classifier to recognize P-waves for
TOA calculation. Our preliminary results show that our
method has the potential to be a component of a structural
health monitoring system, for structures such as bridges,
based on acoustic emission.
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