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ABSTRACT
A neuromorphic sound localisation system is proposed. It 
employs two microphones and a pair of silicon cochleae with 
address event interface for front-end processing. This allows 
subsequent processing to be implemented with spike-based 
algorithms. The system is adaptive and supports online learning. 
Its localisation capability was tested with white noise and pure 
tone stimuli, with an average error of around 3° in the -45° to 45° 
range. 
 

Index Terms—Auditory neuroscience, neuromorphic 
engineering, sound localisation

 

1. INTRODUCTION

Sound localisation is the ability to identify the 
direction of a sound and is a key to survival in the animal 
world. It is used by many predators to hunt effectively, 
sometimes in complete darkness. On the other hand, preys 
capable of locating sound accurately will have a higher 
chance to escape. In robotics, however, sound localisation 
has received much less focus compared to vision. 
Nevertheless, sound localisation is expected to become 
more important as robots are required to operate in the real 
world and must respond to both visual and audio stimuli. 

Two important cues for sound localisation in biology 
are interaural time difference (ITD), and interaural 
intensity difference (IID), also known as interaural level 
difference (ILD). These two cues complement each other – 
ITD is dominant at low frequency where phase difference 
can be uniquely and accurately identified, while at high 
frequency IID is more perceivable as wavelength becomes 
smaller than the size of head. Many existing sound 
localisation systems use only ITD to localise sound (e.g. 
[1]-[4]) because it can be measured accurately and is less 
dependent on the frequency content of the signal. The 
microphones in some of these systems are suspended in 
the air or mounted on a plane so that no IID is available. 

In this paper we propose a neuromorphic sound 
localisation system based on ITD extraction. It is 
biologically realistic as a cochlea chip with spiking output 
is used at the front-end and all sub-sequent processing is 
either spike-based, or can be easily mapped to its spike-
based counter-part. Unlike previous implementation 
involving silicon cochleae [2], [3], our system is adaptive 
and does not require any prior knowledge of the ITD 
model. 

 
Figure 1. Coordinate system used, with azimuth = 0° at the front, 90° on 
the left, -90° on the right, and ±180° at the back. 

2. THE LOCALISATION ALGORITHM 

In previous implementations [2], [3], signals recorded 
by microphones are filtered by a left and a right cochlea. 
These cochleae consist of a number of sections and the 
output of each section is a band-pass filtered version of the 
input signal, and the centre frequency of the filters 
decreases exponentially along the cochlea. At each 
cochlear output section, i, cross-correlation with sampled 
time delay is performed on the cochlear outputs, 

dtnTtxtxnR Srightlefti  (1)
 

where TS is the resolution of the cross-correlator. ITD is 
then estimated by: 

i
iS nRT maxargˆ

 (2)
 

It is assumed that ITD is independent of frequency and 
depends purely on the direction of the source,  (Figure 1), 

f  (3) 

Therefore, the estimated direction is computed simply by 
applying the inverse function, 

ˆˆ 1f  (4) 

However, if the microphones are mounted on a head, 
the introduced diffraction will cause f( ) to be frequency 
dependent [5]. At frequencies under 500 Hz, f can be 
approximated by a sine function, but this changes 
gradually to sin( ) +  as the frequency increases above 
1.5 kHz. Thus, different estimates will be given as the 
frequency of the source changes. The task is further 
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Figure 2. Application of soft-WTA to the result of cross-correlation. The 
stimulus is a 650-Hz pure tone with an ITD of approximately -0.6ms. 
This ITD information would have been lost if a normal WTA is used. 

 
complicated when sound localisation is implemented in 
analogue VLSI as there will be mismatch in the delay lines 
used in the cross-correlator and phase mismatch between 
the left and right cochleae, which varies from section to 
section.  

In our proposed system, at each cochlear section, we 
compute cross-correlation, Ri[n], on the left and right 
cochlear outputs as before but the results are processed 
individually so that variations can be compensated using 
the following steps. The first step is to apply a soft-max 
function to each of the Ri[n] separately, which captures not 
only the position of the maximum but also those similar in 
strength in each channel. This is useful when the input 
stimulus is a pure tone, resulting in a periodic cross-
correlation function, where the result at the true time delay 
may not be the global maximum. The use of soft-max 
ensures that the true time delay will not be discarded, as 
shown in Figure 2. The soft-max function can be obtained 
using a soft-WTA network [6]. By adjusting the strength 
of the inhibition in a winner-take-all (WTA) network, one 
can vary the selectivity. In the example shown in Figure 2, 
the strength of the inhibition is set to 1 and both peaks are 
well-preserved.  

The next step is to transform the soft-max result Si[n] 
to Gi( ), a map of auditory activity on the horizontal plane 
with discrete azimuth angle. We can express the 
transformation in matrix form, 

iii sWg  (5) 

where si = [Si[-k] Si[-k+1] … Si[k]]T and gi = [Gi( 1) 
Gi( 2) … Gi( N)]T. Such a matrix multiplication is essential 
in artificial neural networks and has previously been 
implemented in VLSI [7]. Wi can be thought of as the 
synaptic connections between the neurons at the output of 
the soft-WTA and the neurons representing activity in the 
auditory space found in biology. This representation 
allows the system to learn sound localisation online by 
making small incremental changes to the values in W, 
enabling the system is to slowly adapt to a changing 
acoustic environment while in operation. 

During supervised learning, for each cochlear section 
and each azimuth position, we present auditory stimuli to 
the system to produce the soft-max results si and gi = Wi si. 
gi is then compared with a target pattern, ti, resulting in an 
error err = ti - gi. Then we can update Wi with the 
following rulei [8], 

T
ioldnew serrWW  (6) 

with  controlling the learning rate. The target functions 
used for our experiments are Gaussians centred at the 
known training positions (see section 3 for more detail).  

After training, Gi( ) will represent the likelihood that 
the sound arrived from direction , with a maximum at the 
actual source position (for a single source). Therefore, in 
frequency bands where there is sufficient energy from a 
single source, the peaks in correlation for that source will 
align and we can estimate the direction of the source by: 

i
iGmaxargˆ

 (7)
 

3. EXPERIMENTAL SETUP  

The experimental setup is shown in Figure 1. A pair of 
electret microphones is mounted on opposite sides of a 
sphere, 15 cm in diameter, made of foam. The sphere itself 
is then fixed atop a robot, 15 cm from the ground. This 
sphere simulates the effect of head shadowing and 
diffraction introduced by the head. 

A block diagram of the proposed localisation algorithm 
is shown in Figure 3. For demonstrative purpose, the 
complete system is simulated in MATLAB, except for the 
pair of silicon cochleae, which are implemented in 
hardware. The AER EAR chip [9] contains a matched pair 
of general purpose silicon cochleae with 32 sections, each 
having their own inner hair cell circuits and spiking 
neurons. The cochlea was tuned to cover the range of 
frequency from 200 Hz to 10 kHz. To simulate many 
fibres innervating a single cochlear region with our AER 
cochlea, which has only one output address for this region, 
we have used a high spike rate. Each channel generates, on 
average, 6000 spikes per second when a 100 mVpp sine 
wave of best frequency (BF) is presented. 
Due to the limited dynamic range of the silicon cochleae, 
the signals from the microphones must first be conditioned 
by automatic gain control (AGC) so that the cochlea can 
operate under different sound levels without distortion. In 
biology, due the diminishing phase locking at high 
frequency in the inner hair cells, only the low frequency 
channels can be used to extract ITD. In our case, channels 
with best frequency above 3 kHz are ignored, leaving us 
with 19 sections. There is also an upper limit of 3 kHz for 
all stimuli. 

                                                           
i The update rule is very similar to that used in the back-propagation 
algorithm to train multi-layers neural networks. 
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Figure 3. Block diagram of the proposed system. The block arrows 
represent signals in multiple frequency bands. 
 

We record the impulse responses (IRs) of the 
microphones in response to a loudspeaker at different 
azimuth positions in an almost anechoic room. The walls 
are fitted with sound absorbing material to minimise 
reflection and the only major reflection comes from the 
floor, which is covered with thick carpet. The speaker is 
placed 2.6m away, at the same height as the sphere, and 
the impulse responses were recorded at 10° steps. These 
impulse responses allow us to present any stimulus to the 
AER EAR for both learning and testing, from different 
directions, by simply convolving the source signal with the 
appropriate left and right IRs. This method also allows 
simulated AGC to be applied to the signals before they 
enter the cochleae. 

The outputs from the AER EAR are passed to the 
cross-correlator. The cross-correlator can be built using 
either shift registers or silicon axons [10] as delay lines 
and have neurons spiking if both inputs arrive within a 
short period of time, as proposed in Jeffress’ model [11]. 
In our simulation, the cross-correlator contains 101 delay 
positions, from -1ms to 1ms with 20 s resolution. 

For the soft-WTA network, although spiking WTA 
network have been demonstrated [12], for simplicity, 
WTA dynamics will not be simulated and only the steady-
state output will be computed. 

For the spatial map of auditory activity, 61 azimuth 
positions are used, covering the angles from -90° to 90° 
with 3° resolution. In each frequency channel, the weight 
matrix Wi is trained with band-limited noise stimuli with a 
bandwidth of 0.9fC to 1.1fC, where fC is the centre 
frequency of the channel. For each training example, we 
set the target ti to be a Gaussian function centred at the 
expected position of the source, with  = 25°. One of the 
advantages of choosing a Gaussian function instead of an 
impulse function is that it updates not only the weights 
going into the neuron representing the source position, but 
also those surrounding it. As a result, there is no need to 
provide training data at every position and the system will 
be able to interpolate upon successful training. 

 
Figure 4. Localisation results and errors at different azimuth, for a white 
noise stimulus. RMS error is calculated at each position from 5 trials. 
RMS error across the [-90°, 90°] range is 4.4°. 
 

 
Figure 5. Localisation results and errors at different azimuth, for pure 
tone stimulus of 400-Hz and 650-Hz. RMS errors across the [-90º,90º] 
range are 6.2° and 6.9°, respectively. For the 650-Hz, there are big errors 
outside ±90º due to front-back asymmetry. This is a result of the head 
being mounted near the front of the robot and interference caused by the 
body of the robot when the sound arrives from the back. 
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Table 1. Comparison with other sound localisation systems 

Localisation
system 

Localisation
cues used 

Stimulus RMS Error 
(0°-45° / 45°-90°) 

Current work ITD Noise 2.7 / 5.5  
Pure tone 3.7 / 8.4 

[1] ITD Noise, 
<300Hz 

3 / 7 

[13] IPDi + IEDii + 
IID + spectral 
cues 

Impulse 5 / 5   
(2-D localisation) 

[14] (a) ITD Noise 2 / 3 
(b) IPD + IID Noise 1 / 3 

[15] IPD + IID with 
motion 

Noise 1 / 2  

[16] IPD + IID Speech 3 / 12  

4. RESULTS

We tested the performance of our proposed system 
with three types of stimuli – (a) band-limited white noise 
(up to 3 kHz), (b) a 400 Hz pure tone, and (c) a 650 Hz 
pure tone. Each stimulus lasts 100 ms and is multiplied by 
a Hanning window to remove any apparent onset and 
offset. These stimuli are convolved with the impulse 
responses of the target direction and amplified (simulated 
AGC) before they are played to the cochlea chip.  

Figure 4 shows the localisation results when white 
noise is used. Note that with only 2 microphones, it is not 
possible to distinguish front-back ambiguity because the 
resultant ITD’s (as well as IID’s in the absence of the 
pinna) are exactly the same. Therefore, sources originating 
from ±[90°,180°] are mapped to ±[0°,90°]. We also plotted 
the localisation errors in Figure 4. The RMS error is 2.7° 
in the range ±[0°,45°] and increases to 5.5° in the range 
±[45°,90°]. As expected, errors are largest around ±90° 
due to ITD being weakly sensitive to changes in , and a 
lower SNR at the far ear. 

Figure 5 shows the localisation results for pure tones. 
Together, RMS error is 3.7° in the range ±[0°,45°] and 
increases to 8.4° in the range ±[45°,90°]. This drop in 
performance when a pure tone is used is similar to test 
results in humans. We compare the performance of our 
system with other 2-microphone systems in Table 1. The 
performance of our spike-based system is comparable 
against some implementations such as [1] and [16]. 

5. CONCLUSION 

An ITD-based neuromorphic sound localisation system 
has been proposed. It uses a pair of silicon cochleae as a 
front-end and supports spike-based processing. By 
individually processing each frequency band, frequency 
dependent variations are overcome and the final system 
demonstrates the ability to accurately determine the 
position of the source for both pure tone and white noise 
stimuli, in contrast to many existing sound localisations 
                                                           
i Interaural phase difference 
ii Interaural envelope difference 

which are tested with only one type of sound. The system 
can also compensate for systematic offset caused by circuit 
mismatch. Finally, this new architecture supports online 
learning, allowing the system to learn while in operation. 
Future work will concentrate on improving the learning 
algorithm as well as implementing the full system in 
hardware to enable real-time operation.  
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