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ABSTRACT

A two microphone direction of arrival (DOA) estimation technique
for multiple speech sources is developed which exploits speech
specific properties, namely sparsity in time-frequency (spectrum)
domain. For robustness, we exploit the sparsity in the frequency
domain by focusing on the spectral content concentrated in sinu-
soidal tracks obtained through sinusoidal modeling. When multiple
speeches are mixed in the two microphone system, the inter-channel
phase differences (IPD) between the dual channels on those sinu-
soidal tracks will be dominated by the spatial information of the
most powerful source at that specific time-frequency point because
of the spectrum sparsity and masking effects. Thereby, the source
localization problem is turned into a clustering problem on the IPD
versus frequency plot, and the generalized mixture decomposition
algorithm (GMDA) is used to cluster the groups of points corre-
sponding to multiple sources. The DOA of each source is derived
from the parameters of each cluster. Experimental results conducted
show the scheme to be very effective.

Index Terms— Two microphone system, direction of arrival es-
timation, speech, sparsity, sinusoidal modeling, generalized mixture
decomposition algorithm

1. INTRODUCTION

In this paper, direction of arrival (DOA) estimation using only
two microphones is considered, and methods in this context can
be broadly categorized into two classes: time domain approaches
and frequency domain approaches. The time domain algorithms
include time domain cross correlation method, average-magnitude-
difference function method, LMS-type adaptive TDE algorithm,
and adaptive eigenvalue decomposition algorithm associated with
blind channel identification (see [1] and refs. therein). The fre-
quency domain algorithms include linear regression method, blind
channel identification based method and the well known general-
ized cross-correlation (GCC) family of methods, which includes
many variations such as the smoothed coherence transform, the
phase transform, the maximum likelihood approach among oth-
ers [2, 3, 1]. However, most of the these algorithms are based on a
single source signal model and can not effectively locate multiple
sources. It is shown that speech specific attributes, namely spar-
sity in time-frequency domain, can be utilized to locate multiple
speech sources using two microphones [4, 5, 6]. For instance, in
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[4] the presence of gaps in the spectrum of each source at different
times and frequencies is exploited and an image processing method
is employed to detect vertical segments in the frequency vs. path
difference plot to locate two sound sources. In [5], harmonic sound
stream segregation using localization is considered and a rough
localization method based on harmonic streams and inter-channel
phase differences (IPD) and inter-channel intensity difference (IID)
is proposed. The sparse speech assumption is explicitly used in [6]
for localization and a histogram type of method is proposed to locate
multiple sources through the frequency vs. DOA plot.

In this paper, we follow this tradition and propose a two micro-
phone DOA estimation technique for multiple speech sources based
on the speech’s sparsity attribute. Speech can be represented by si-
nusoidal tracks in the time-frequency (spectrum) domain according
to sinusoidal modeling [7]. An advantage of utilizing the sinusoidal
tracks is that they represent regions where speech energy is concen-
trated leading to high signal to noise ratio data points for further anal-
ysis. When multiple speech are mixed in the two microphone/dual
channel system, the inter-channel phase differences (IPD) between
the dual channels on those sinusoidal tracks will be dominated by
the spatial information of the most powerful source at that specific
time-frequency point because of the spectrum sparsity and masking
effects (Sec. 2). The error between the IPD between the dual chan-
nel signals and the IPD between a source signal’s contributions at
the dual channels is modeled as a random variable and a statistical
signal model for the IPD error is proposed. Thereby, the source lo-
calization problem is turned into a clustering problem on the IPD
vs. frequency plot. Generalized mixture decomposition algorithm
(GMDA) is used to cluster the groups of points representing multiple
sources. The DOA of each source is derived from the parameters of
each cluster. Depending on inter-microphone spacing, spatial alias-
ing effect is taken into consideration by proper phase unwrapping. A
minimum description length (MDL) algorithm is used to determine
the number of sources. Experimental results conducted demonstrate
the efficacy of the proposed method.

2. TWOMICROPHONE DOA ESTIMATION FOR
MULTIPLE SOURCES

2.1. Single Source Scenario

We first describe two microphone based DOA estimation using IPD
for a single source to motivate the proposed method. Assuming a
far field source scenario, a simple DOA estimation algorithm using
two microphones can be developed based on inter-channel phase dif-
ference (IPD). Denoting the desired source signal by s[k], the dual
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channel discrete signals x1[k] and x2[k] can be expressed as,

x1[k] = s[k] + n1[k] (1a)
x2[k] = s[k − τ ] + n2[k] (1b)

where s[k − τ ] represents a delayed version of s[k], τ is the time
delay of the desired source. n1[k] and n2[k] represent ambient noise
and more generally also include interference signals.

The short time discrete Fourier transform (DFT) of x1[k] and
x2[k] is denoted byX1(ω) and X2(ω) respectively.

X1(ω) = S(ω) + N1(ω) (2a)

X2(ω) = S(ω)e−jωτ + N2(ω) (2b)

where ω represents angular frequency, S(ω) is the DFT of s[n],
N1(ω) and N2(ω) represent DFT of n1[k] and n2[k] respectively.

The IPD ψX(ω) between the two channels is,

ψX(ω) = � X1(ω)− � X2(ω) (3)

and is constrained to be in the range [−π, π] after mod(2π) oper-
ation. � X1(ω) and � X2(ω) is the phase of X1(ω) and X2(ω) re-
spectively. IfN1(ω) andN2(ω) have much smaller magnitudes than
the magnitude of S(ω), then

ψX(ω) = ωτ + 2πn + v(ω) (4)

where 2πn represents possible phase unwrapping. v(ω) denotes IPD
error, which represents a zero mean noise term. A similar prob-
lem is considered in noncoherent detection in communication, where
a Gaussian distribution is proposed to approximate the probability
density function (PDF) of v(ω) at high SNR. In this work we pro-
pose to approximate the PDF of the IPD error v(ω) by a zero mean
Gaussian or Laplacian random variable. Laplacian distribution is
considered because of its robustness to outliers. The DOA of the
desired source can be derived from the following equation,

τ = d sin θ/c (5)

where d represents inter-microphone distance, c the sound speed,
and θ the DOA of the desired source.

Using the IPDs at different frequencies ω and different frames,
linear regression method can be employed to estimate the slope of
curve IPD ψX(ω) with respect to ω in the IPD vs. frequency plot,
thereby estimating the DOA of the source. To enhance robustness,
it is useful to account for the SNR at each frequency and frame and
it is preferable to use only those data points with high SNR. The in-
clusion of only reliable points in the estimation will be an important
component of the method proposed in the paper.

The above DOA estimation method based on IPD performs well
when there is only one source and the SNR is high. It is unable
to locate multiple sources particularly when there are multiple white
sources with similar power level. Expanding the signal model shown
in Eq. (2) to multiple sources, it can be readily seen that if there are
two sources with similar power the IPD ψX(ω) in Eq. (3) does not
have any simple relationship to the DOA of either source.

2.2. Multiple Source Scenario

We now develop a method for the multiple source DOA estimation
that exploits source specific knowledge and attempts to retain the
simplicity of the IPD technique. The speech signal has a special
property, namely sparsity in time-frequency domain: Sparsity in
time domain. Natural speech generally has many short pauses and

silent segments, which may occupy more than half of the total time.
Sparsity in frequency domain. The signal power of speech is not
equally distributed across the whole frequency range. For voiced
speech, the signal power is concentrated on a set of equally dis-
tributed discrete frequency points, i.e. harmonics of the pitch fre-
quency [7].

Collectively the above two attributes make the speech sound
sparse in the time-frequency domain. When a recording con-
tains multiple speeches, at a specific time-frequency point, there
is a high likelihood that at most one source is dominating (in
power) and the contributions from other sources is negligible.
As a consequence, the IPD ψX(ω) (Eq. (3)) will be dominated
by the IPD ψS(ω) of the dominating source, ψS(ω) is defined
as the IPD between the source’s contribution at the two channels,
ψS(ω) = � S(ω) − � {S(ω)e−jωτ} = ωτ . So the IPD ψX(ω)
contains DOA information of the dominating source at that time-
frequency point and can be used for DOA estimation. This is
denoted as masking effect in this paper.

Speech’s sparsity attribute and the masking effect combined
leads to the idea of DOA estimation using only points with high
local SNR in the time-frequency domain, i.e. DOA estimation based
on sinusoidal modeling [7]. In [7], it is observed that speech usu-
ally has power focused on a set of discrete frequencies and can be
modeled by a set of sinusoidal tracks. Sinusoidal tracks are defined
to be continuous local peaks in the time-frequency domain which
satisfies a set of constraints. By the sparsity and masking properties
of speech signals, the sinusoidal tracks extracted from one channel
of a mixed signal (can be either left or right channel) can be ap-
proximated as a disjoint union of the sinusoidal tracks from each
of the different source signals, i.e. a track of the mixed signal can
be associated with one of the source signals. This association is
not known and will be dealt with in the next section. When two
or more sources have similar power level at a time-frequency area,
the interaction between source signals will cause the mixed signal
X(ω) to fluctuate frequently resulting in no sinusoidal tracks in the
corresponding time-frequency area. The points on the sinusoidal
tracks will implicitly has high SNR.

We propose to use the IPD ψX(ω) between the two channels on
points of the sinusoidal tracks for multiple sources DOA estimation.
As an example, the IPD ψX(ω) on points of the sinusoidal tracks is
plotted in a IPD vs. frequency plot (Fig. 1 (a)). For comparison, the
IPD ψX(ω) on all spectrum points is also plotted (Fig. 1 (b)). The
DOA of the two speech sources are 60◦ and −45◦ respectively. The
inter-microphone spacing is 4cm. There is no spatial aliasing [3] in
this example. From Fig. 1 (a), it is clear there are two clusters of
points which can be fitted by two lines. This represents two sources
and the DOA of the two sources can be derived from the slopes of the
two lines. When the IPD ψX(ω) for all spectrum points is plotted
(Fig. 1 (b)), the cluster information is obscured and overwhelmed by
noise although some cluster information can still be deduced from
the plot.

In summary, the steps of the proposed dual channel multiple
speech sources DOA estimation method are enumerated:
1. Calculate the time-frequency spectrum X1(ω) and X2(ω) of
the two microphone signals using short time DFT.

2. Extract sinusoidal tracks from one of the two channels.
3. Calculate the IPD ψX(ω) between the two channel signals

X1(ω) and X2(ω) on points of the sinusoidal tracks.
4. Cluster the points on the IPD vs. frequency plot, employ line
fitting techniques to fit set of lines and derive DOA of sources
from the slopes of the lines.
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(a) IPD ψX(ω) on points of the sinusoidal tracks
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(b) IPD ψX(ω) on all spectrum points

Fig. 1. Inter-channel phase difference vs. frequency, 2 sources

The last step, clustering and line fitting techniques, is discussed
in the following section.

3. CLUSTERING AND LINE FITTING

3.1. Generalized mixture decomposition algorithm

This section describes a procedure that does the clustering and line
fitting jointly. For this purpose, the IPD error v(ω) in Eq. (4) (the
distance from a data point to the center of its underlying cluster, i.e.
a line) is modeled as a Gaussian or Laplacian random variable. A
mixture model is then employed to fit the data and the generalized
mixture decomposition algorithm (GMDA) [8] is used to cluster the
data.

Assume there are m clusters, Cj , j = 1, .., m, i.e. m speech
sources, and m is assumed to be known. Assume there are N data
points yi, i = 1, .., N . Each data point yi is a 2-dimension vec-
tor which denotes a point on the IPD vs. frequency plot, yi =
[ω,ψX(ω)]T . A mixture model can be used to fit the data points.
Each component of the mixture is associated with a line. The dis-
tance from each data point to its underlying line is modeled as a
random variable with the PDF p(yi|Cj ; θj), where θj is the param-
eter vector characterizing the line corresponding to the jth cluster.
The parameters of the mixture model are learnt from the data points
using the maximum likelihood approach. The complete Expectation-
Maximization (EM) algorithm herein is the generalized mixture de-
composition algorithm (GMDA) [8]. The GMDA in [8] is very gen-
eral and to get more specific update rules for the GMDA, an explicit
form for the PDF p(yi|Cj ; θj) is necessary. As previously discussed
in Sec. 2, an appropriate form is either a Gaussian distribution or
Laplacian distribution (see [9] for more details).

In previous discussion of GMDA, the number of sources, and
hence the number of clusters is assumed to be known. However,
the number of clusters is not known in reality and has to be esti-
mated from the data. This is the model selection step. Since GMDA
falls into the maximum likelihood framework, minimum description
length (MDL) method can be used to estimate the model order.

3.2. Clustering and line fitting under spatial aliasing scenario

In the previous discussion, it is assumed the inter-microphone spac-
ing is small such that there is no spatial aliasing [3]. One example
IPD vs. frequency plot under such scenario is shown in Fig. 1 (a).
With the increasing of the inter-microphone distance spatial aliasing
may exist. Fig. 2 (a) shows the IPD vs. frequency plot for the same
scenario as in Fig. 1 (a) except that the inter-microphone spacing is
increased to 12cm. Recall the IPD on the original IPD vs. frequency
plot is always confined to be in the range of [−π, π]. Two sources
can still be observed in Fig. 2 (a), however, the two lines representing
the two sources are broken into parallel segments because of phase
wrapping effect. The two lines are easier to be observed if we do
phase unwrapping and move the broken line segments parallelly and
properly. This is shown in Fig. 2 (b). Note that the phase is no longer
confined to [−π, π].

The GMDA is now modified to handle spatial aliasing properly.
Define a new IPD ψ′X(ω) = ψX(ω) + 2πn, where n is integer and
2πn represents possible phase unwrapping. After appropriate phase
unwrapping, the new data point y′i = [ω, ψ′X(ω)]T will lie around
its true underlying line. We propose to choose the phase unwrapping
which yields the biggest probability for the observed data point. If
the PDF of observing data point yi given jth cluster is chosen as
Gaussian, denote

nj = arg max
n

1√
2πσj

exp{− (yi,2 + 2πn− αjyi,1)
2

2σ2

j

},

j = 1, .., m (6)

J = arg max
j

p′(yi|Cj ; θj) (7)

then y
′
i is chosen as y′i = [ω, ψX(ω) + 2πnJ ]T .

4. EXPERIMENTS

Simulation was conducted to demonstrate the performance of the
proposed algorithm using speech sources. Example 1:There are 2
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(b) After adjusting phase

Fig. 2. Inter-channel phase difference vs. frequency, 2 sources, spatial aliasing scenrio

speech sources with DOA of −45◦ and−50◦ respectively and inter-
microphone spacing of 4cm. If we choose the Gaussian PDF model
for the IPD error term, the estimated source number is 3 and the es-
timated DOAs are (−50.00◦,−44.96◦,−54.80◦). If choose Lapla-
cian distribution instead, the estimated source number is 2 and the
estimated DOAs are (−49.86◦,−45.16◦). This example demon-
strates the GMDA method with Gaussian PDF model may overesti-
mate the number of sources when the sources are spatially closely
distributed. As is known, the Gaussian PDF model is sensitive to
outliers in model learning. On the other hand, the Laplacian distri-
bution for the IPD error term has a heavier tail and is more robust to
outliers. In the rest of the experiments, due to space limitations, only
results with the Laplacian PDF model are presented.
Example 2: There are 2 speech sources and the inter-microphone
spacing is 12cm, Table 1 illustrates the true DOA of the sources and
the estimated DOAs for a variety of source configurations. The re-
sults demonstrate the proposed algorithm’s to be quite reliable.
Example 3: There are three sources with DOA 60◦, 0◦ and −45◦

respectively. The inter-microphone spacing is 12cm. The estimated
DOA of sources are (60.20◦, 0.09◦,−45.09◦).
Example 4: In this experiment, the robustness of the proposed al-
gorithm to the ambient white noise level is illustrated. High local
SNR on points of the sinusoidal tracks is expected even though the
global SNR across the whole spectrum might be low. Therefore,
good DOA estimation would be expected even when the white noise
level is high. When the SNR is higher than 10 dB, the DOA estima-
tion is found to be quite accurate with the average DOA estimation
lower than 0.5◦. However, when the SNR is reduced to 0 dB, the
DOA estimation error is large. This is a consequence of the failure
of the sinusoidal track extraction program used to pick up the true
sinusoidal tracks from the spectrum. More details and experiment
results can be found in [9] .

5. REFERENCES

[1] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in
room acoustic environments: an overview,” EURASIP J. Appl.

Table 1. Estimated DOA for various configurations
Configuration index 1 2 3

source 1 0◦ 40◦ 75◦True DOA
source 2 5◦ 45◦ 80◦

source 1 0.08◦ 40.13◦ 75.15◦Estimated DOA
source 2 4.85◦ 44.78◦ 79.74◦

Signal Process., vol. 2006, no. 1, pp. 170–170, 2006.
[2] C. Knapp and G. Carter, “The generalized correlation method

for estimation of time delay,” Acoustics, Speech, and Signal Pro-
cessing, IEEE Transactions on, vol. 24, pp. 320–327, Aug 1976.

[3] H. L. V. Trees, Optimum Array Processing. Wiley-Interscience,
2002.

[4] D. Banks, “Localisation and separation of simultaneous voices
with two microphones,” Communications, Speech and Vision,
IEE Proceedings I, vol. 140, no. 4, pp. 229–234, Aug 1993.

[5] T. Nakatani and H. G. Okuno, “Harmonic sound stream seg-
regation using localization and its application to speech stream
segregation,” Speech Commun., vol. 27, pp. 209–222, 1999.

[6] C. Liu, B. C. Wheeler, W. D. O’Brien, Jr., R. C. Bilger,
C. R. Lansing, and A. S. Feng, “Localization of multiple sound
sources with two microphones,” Acoustical Society of America
Journal, vol. 108, pp. 1888–1905, Oct. 2000.

[7] R. McAulay and T. Quatieri, “Speech analysis/synthesis based
on a sinusoidal representation,” Acoustics, Speech, and Signal
Processing, IEEE Transactions on, vol. 34, pp. 744–754, Aug
1986.

[8] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Third
Edition. Orlando, FL, USA: Academic Press, Inc., 2006.

[9] W. Zhang and B. D. Rao, “A twomicrophone based approach for
direction of arrival estimation of multiple speech sources,” sub-
mitted to Audio, Speech and Language Processing, IEEE Trans-
actions on.

2196


