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ABSTRACT

This paper deals with three new polarimetric SAR processors
based on subspace detectors. These algorithms aim at using
models with physical and polarimetric scattering properties
not exploited by the isotropic point model. These processors
are implemented by computing the corresponding target sub-
spaces. Results on simulated data with realistic targets show
the interest of these new processors.

Index Terms— SAR Processors, Subspace Detectors, Po-
larimetry

1. INTRODUCTION

The detection of Man Made Targets (MMT) embedded in
noise, clutter or speckle with a polarimetric SAR system is a
current issue for both the signal processing and the SAR com-
munities. Most of SAR detection algorithms consider targets
as isotropic point and focus on noise properties [1, 2]. How-
ever, the target scattering properties can be used to have a
more suitable model. We previously developed new SAR pro-
cessors based on subspace detectors to take into account the
scattering properties of MMT in only one polarimetric chan-
nel [3, 4]. In this paper, we consider, in addition to the scat-
tering properties of the target, all the polarization channels.
For this purpose, we develop polarimetric SAR processors ex-
ploiting a target model based on its physical properties; the
techniques used in [4] are extended to take in account po-
larimetric properties. We assume that the target scattering be-
longs to a low polarimetric subspace. Considering all the con-
figurations of a plate for the co-polarized channels (HH and
VV), we construct processors based on an appropriate Gen-
eralized Likelihood Ratio (GLR) [5]. Since several possibili-
ties are available to organize the polarimetric vectors, we de-
velop three new processors based on different preprocessing
polarimetric decompositions; we show that these polarimetric
preprocessing treatments are equivalent to classical post pro-
cessing treatments in polarimetry [6]. Compared to a single
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polarization channel processor, these new polarimetric pro-
cessors show important improvements in terms of probability
of detection and robustness.
This paper is organized as follows. The detection problem
and the description of the polarimetric model are presented in
section 2. Three cases depending on polarimetric decompo-
sitions are determined and related to their physical meaning.
Section 3 describes the polarimetric target subspaces. In sec-
tion 4, we discuss about the expressions of these new proces-
sors. Finally, in section 5, we compare the performance of
the three processors. Two targets with different polarimetric
properties are considered to test the ability and the robustness
of the three processors.
The following convention is adopted: italic indicates a scalar
quantity, lower case boldface indicates a vector quantity and
upper case boldface a matrix. T denotes the transpose opera-
tor and † the transpose conjugate.

2. POLARIMETRIC DETECTION PROBLEM FOR A
DIRECTIVITY OBJECT

Assuming that the scattering of a man-made-target (MNT) is
directive, the isotropic point model used in classical SAR de-
tectors is not suitable. A canonical element for the model
is more adapted to detect realistic targets. As in [3, 4], the
canonical element is chosen here to be a perfectly conducting
plate whose backscattering is computed by means of physical
optics approximation (PO). Moreover, all polarization chan-
nels are considered in this paper. For a plate, the PO approxi-
mation gives rise to the nullity of the cross-polarization (HV)
and the equality of the co-polarization (HH,VV) of the target
backscattering. Hence, only the HH and VV channels will be
considered in our study. (The subscripts H and V will refer to
HH and VV channels).
We denote by zpi ∈ C

K (p = H or p = V ) the received
signal samples at every ui position of the antenna in channel
p; the total received signal zp for one polarization channel is
the concatenation of the N vectors zpi (see [4]).

zp ∈ C
NK , zp =

[
zT

p1 zT
p2 . . . zT

pN

]T (1)
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The total polarimetric received signal z is then the concatena-
tion of zH and zV :

z ∈ C
2NK , z =

[
zT

H zT
V

]T (2)

The detection problem at position (x, y) can be stated as the
following binary hypothesis test:⎧⎨

⎩
H0 : z = n

H1 : z =

(
aHy(α, β)
aV y(α, β)

)
+ n

, (3)

where n ∈ C
2NK is a complex Gaussian white noise vector

of known variance σ2 (for the unknown variance case, see
[4]), y(α, β) is the backscattering of the target model at po-
sition (x, y) with orientation (α, β). The PO approximation
yields for a plate model [7]:

y(α, β) = yH(α, β) = yV (α, β) (4)

(aH , aV ) are two unknown complex attenuation coefficients.

Some assumptions on the relationship between the polar-
ization channels of the target can be formulated through those
coefficients. We distinguish three cases:

1. “Decorrelated” case, aH �= aV : the HH and VV chan-
nels are not related, no assumption is made on the po-
larimetric properties of the model;

2. “Correlated +” case, aH = aV : the attenuations in
the HH and VV channels are equal in magnitude and
in phase. Physically this corresponds to single bounce
scattering [6];

3. “Correlated -” case, aH = −aV : the attenuations in the
HH and VV channels have the same magnitude but are
opposite in phase; this corresponds to double bounce
scattering [6].

These three cases lead us to develop three different proces-
sors.
Since the orientation (α, β) of the target is unknown, we
make the following assumptions:

∀(α, β) ∈ [αmin, αmax] × [βmin, βmax],y(α, β) ∈ 〈Hxy〉
(5)

where 〈Hxy〉 is a polarimetric signal subspace of dimension
DH . We denote Hxy a 2KN × DH basis of this subspace.
The detection problem may then be rewritten as follows:{

H0 : z = n

H1 : z = Hxyλ + n
, (6)

where λ ∈ C
DH×1 is an unknown coordinate vector.

As in [5, 8], we propose to form the SAR image by choosing

for the pixel value I(x, y) a monotonic function of the Gen-
eralized Likelihood Ratio Test (GLRT) [3, 4]:

I(x, y) =
‖H†

xyz‖2

σ2
(7)

The intensity I(x, y) depends directly on the projection of z
onto the signal subspace 〈Hxy〉; for the three detection prob-
lems defined above we will have three different subspaces
and so, three different processors.

3. BASIS COMPUTATION

We propose in this section a method to compute theHxy ba-
sis for each polarimetric hypothesis described above. This
computation is performed from the matrix Sxy containing all
the target model responses in the polarimetric channels. The
different constructions of this matrix are firstly described and
the resulting basis are next presented.

3.1. Construction of Signal Matrix

For one polarimetric channel, each column ofSp
xy ∈ C

NK×M

is the concatenation of responses of the plate for each posi-
tion of the radar with one known orientation of the plate [3, 4]:

Sp
xy = [y(α1, β1) . . .y(αi, βj) . . .y(αP , βQ)] (8)

where (αi, βj) span [0, π] × [0, π] andM = PQ.
Since in Eq.4, y(αi, βj) are equal for the HH and VV chan-
nels, Sxy is the same for the HH and the V V polarization
channels:

SH
xy = SV

xy = Sp
xy (9)

From detection problem in Eq.3 and the polarimetric hy-
pothesis, we have three polarimetric signal matrices:

1. “In the decorrelated” case, the two polarization chan-
nels are independent:

Sdeco
xy =

(
Sp

xy 0

0 Sp
xy

)
(10)

2. “In the correlated +” case, we consider that the HH

and V V channels are positively correlated; thus the
signal matrix is defined as follows:

Sco+
xy =

(
Sp

xy

Sp
xy

)
(11)

3. “In the correlated -” case, we consider that theHH and
V V channels are negatively correlated; thus the signal
matrix is defined as follows:

Sco−
xy =

(
Sp

xy

−Sp
xy

)
(12)
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3.2. Construction of Signal Basis

For one polarization channel, the basisHp
xy is obtained from

the SVD of Sp
xy [9] defined in Eq.8:

Sp
xy = UxyΣxyV

†
xy (13)

where Uxy and Vxy are the left and right singular vectors,
and Σxy is a diagonal matrix containing the singular values.
Then the basisHp

xy corresponds to theDH first singular vec-
tors ofUxy associated to the DH highest singular values.
Now, we will see how the basisHdeco

xy andHco±
xy are obtained.

For the “decorrelated” case, the matrices Sp
xy representing

the HH and VV channels, are orthogonally arranged in Sdeco
xy

as shown by Eq.10. We compute the SVD of Sdeco
xy :

Sdeco
xy = Udeco

xy Σdeco
xy Vdeco†

xy (14)

=

(
UxyΣxyV

†
xy 0

0 UxyΣxyV
†
xy

)
(15)

where,

Uxy ∈ C
NK×M , Uxy =

[
u1xy u2xy . . . uMxy

]
(16)

Thereby, after arranging the singular values in Eq.15 in de-
scending order,Udeco

xy has the form:

Udeco
xy =(
u1xy 0�0,NK� u2xy . . . uMxy 0�0,NK�

0�0,NK� u1xy 0�0,NK� . . . 0�0,NK� uMxy

)
(17)

The basisHdeco
xy consists in the 2DH first columns ofUdeco

xy ;
by the structure of Hdeco

xy , we see that in the polarimetric
subspace 〈Hdeco

xy 〉 the polarimetric information is treated sep-
arately.
In the “correlated” cases, the SVD of Sco±

xy is expressed as:

Sco±
xy =

(
Sp

xy

±Sp
xy

)
(18)

We deduce that,

Sco±
xy = Uco±

xy

√
2ΣxyV

†
xy (19)

with

Uco±
xy =

(
1√
2
Uxy

± 1√
2
Uxy

)
(20)

The basis Hco±
xy consist then in the DH first columns of

Uco±
xy .

Contrary to Hdeco
xy , each vector of Hco±

xy describes the two
polarization channels. Moreover the subpaces 〈Hco±

xy 〉 have a
lower dimension than 〈Hdeco

xy 〉.

Actually, these basis Hdeco
xy and Hco±

xy have to be com-
puted for all pixels of the detection image. A method for us-
ing only one SVD is presented in [4] and allows to perform
these computations in realistic SAR configurations.

4. DISCUSSION ABOUT NEW POLARIMETRIC SAR
PROCESSORS

As we have seen in Sec 2, the pixel intensity at (x, y) of the
SAR processors depends on the projection of the received
signal z onto the polarimetric signal subspace; from Hdeco

xy

and Hco±
xy , we compute the structures of the different detec-

tors. For the “decorrelated” case, the intensity of a pixel is
expressed as follow:

Ideco(x, y) =
‖Hdeco†

xy z‖2

σ2
(21)

=
‖HH†

xy zH‖2

σ2
+

‖HV †
xy zV ‖2

σ2
(22)

= IH(x, y) + IV (x, y) (23)

The application of the“decorrelated” detector leads to apply
the processor to the HH and VV channels separately. From a
polarimetric point of view, the sum of IH(x, y) and IV (x, y)
has no physical signification because the phase information
between the two channels is lost.
For the “correlated” cases, the intensities are:

Ico+(x, y) =
‖Hco+†

xy z‖2

σ2
(24)

=
1

2

‖H†
xyzH + H†

xyzV ‖2

σ2
(25)

Ico−(x, y) =
‖Hco−†

xy z‖2

σ2
(26)

=
1

2

‖H†
xyzH − H†

xyzV ‖2

σ2
(27)

We clearly see that the intensities of the “correlated” proces-
sors are the sum or the difference of the projections of zH

and zV . In polarimetry, the sum of the HH and VV channels
corresponds to a single bounce scattering and the difference,
to double bounce scattering; in fact we retrieve the Pauli de-
composition [6] used in radar image post processing. Thus,
targets with different polarimetric properties will be treated
differently with the two “correlated” processors. In the next
section we will see that for realistic targets, only the “corre-
lated -” processor will be useful.

5. SIMULATIONS

We are interested in evaluating and comparing the perfor-
mance of the polarimetric detectors; the three processors are
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tested on simulated data. For the target, we choose two ob-
jects with different polarimetric signatures and which can de-
scribe a MMT: a perfectly conducting plate in free space (sin-
gle bounce scattering) whose scattering is computed from PO
approximation [7, 4], and a perfectly conducting box with
ground (double bounce) whose scattering is simulated using
Feko [10]. Both targets are embedded in a white Gaussian
noise. We represent in figure 1 and figure 2 the probability
of detection for the new detectors and for detectors using a
single polarization channel (HH and VV).

Fig. 1. Detection Probability versus SNR. for a plate

Fig. 2. Detection Probability versus SNR. for a box with
ground

In figure 1, the “decorrelated” detector allows a 2dB gain
compared to a single channel detector; since the main scatter-
ing mechanism for the plate is single bounce, only the “corre-
lated +” detector is able to detect it. This detector provides a
1dB gain compared to the “decorrelated” one and a 3dB gain
compared to a single channel detector. In figure 2, we have
the same results as for the plate, except that we have to use the
“correlated-” detector to detect the box on ground (because of
the double bounce); moreover, the scattering mechanisms in-
volved for this target correspond to those for realistic targets.
Thus, only the “decorrelated” and the “correlated -” detectors
will be used in practice, knowing that the “correlated -” detec-

tor is optimal. Finally, in addition to an increased probability
of detection, these two processors are robust since they are
able to detect any kind of MMT.

6. CONCLUSION

We presented in the paper, three new polarimetric SAR pro-
cessors based on subspace detectors and polarimetric decom-
position. By using other models than isotropic point and by
taking in consideration the target polarimetric information,
these three processors increase the probability of detection
compared to processors using one polarization channel. Fur-
thermore, by a good arrangement of the polarimetric data, the
“correlated” processors outperform the “decorrelated” one by
using the polarimetric properties of the model; these results
show firstly, that the separate use of polarimetric channels in
detection provides improvements and secondly, that the use
of polarimetric information between HH and VV channels
yields additional detection gain.
The extension of our model to the cross-polarization channels
and the study of a optimal polarimetric detectors seem to be a
promising future work.
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