
LOW COMPLEXITY AZIMUTH AND ELEVATION ESTIMATION FOR ARBITRARY ARRAY
CONFIGURATIONS

Mário Costa, Visa Koivunen∗

Helsinki University of Technology
Department of Signal Processing and Acoustics, SMARAD CoE

P.O. Box 3000, FIN-02015 TKK, Finland
Email: {forename.surname}@hut.fi

Andreas Richter†

Nokia Research Center,
P.O.Box 407, FIN-00045 NOKIA GROUP, Finland

Email: {forename.surname}@nokia.com

ABSTRACT
In this paper we propose azimuth and elevation angle of arrival
estimation algorithms for arbitrary array configurations. The pro-
posed algorithms extend the Polynomial Rooting Intersection for
Multidimensional Estimation (PRIME) [1] and statistically efficient
Modified Variable Projection (MVP) [2] algorithms to arbitrary sen-
sor array configurations without explicit knowledge of the steering
vector. The proposed algorithms exploit the concept of Manifold
Separation Technique (MST) [3], [4]. Thus, the data are processed
in the element-space domain and are not subject to mapping
errors. Moreover, closed-form derivatives of the Weighted Subspace
Fitting (WSF) cost function are obtained, even for real-world arrays
with imperfections, making the proposed MVP computationally
attractive. The obtained estimates for both elevation and azimuth
show an error variance close to the Cramér-Rao Lower Bound
(CRLB).

Index Terms— DoA estimation, WSF, polynomial rooting,
arbitrary arrays, array calibration measurements.

I. INTRODUCTION
In array signal processing it is often convenient to use regular

sensor array geometries such as Uniform Planar Arrays (UPAs).
This leads to reduced computation since the steering vector matrix
can be obtained from two Vandermonde structured matrices. Hence,
computationally efficient high-resolution 2-D Direction-of-Arrival
(DoA) estimation algorithms such as RARE [5] and PRIME [1]
may be employed. Moreover, the statistically efficient 2-D MODE
[6] can also be applied to UPAs by exploiting such a structure in
the steering vectors.
In cases where the geometry of the sensor array is arbitrary

or the steering vector is not known explicitly (array calibration
measurements), the aforementioned algorithms can only be used
after a pre-processing of the data by an array interpolation technique
[7]. However, the mapping of the data introduces errors in the form
of bias and excess variance since e.g. the Vandermonde structure
is obtained only approximately. Consequently, the acquired DoA
estimates may be far from optimal.
In this paper, we propose novel algorithms for azimuth and ele-

vation estimation that extend the computationally efficient PRIME
[1] and the statistically efficient MVP [2] to arbitrary sensor array
configurations (possibly with imperfections). Additionally, the pro-
posed estimators were derived based on array calibration measure-
ments, making them suitable for real-world arrays. The proposed
extension of the PRIME algorithm avoids the high complexity
search-based algorithms e.g. 2-D MUSIC since the DoA estimates
are obtained by polynomial rooting. Moreover, the proposed MVP
is computational attractive wrt the conventional MVP since closed-
form derivatives of the WSF cost function and Vandermonde struc-
tured vectors for the unknown parameter, are obtained for arbitrary
array configurations with imperfections (similarly to real-world
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arrays). The proposed algorithms exploit the Manifold Separation
Technique (MST) [3]. In particular, the element-space steering
vector of an arbitrary sensor array configuration is modelled as
the product of a sampling matrix that depends only on the sensor
array configuration and two Vandermonde structured vectors that
depends on the wavefield. Unlike the array interpolation techniques,
it does not require sector-by-sector processing. Instead, the whole
2-D visible region is modelled. In theory, the modelling errors can
be made as small as desired [3], [4].
This paper is organized as follows. In Section II, the signal and
array models are presented. In Section III, an extension of the
MST is given. In Section IV, we show that the 2-D MUSIC cost
function using MST can be represented as a bivariate polynomial.
In Section V, the proposed ES-PRIME algorithm for joint azimuth
and elevation estimation on arbitrary array configurations is derived.
In Section VI, the proposed extension of the MVP is derived.
In Section VII, the statistical performance of the algorithms is
illustrated by simulations. Finally, Section VIII concludes the paper.

II. SIGNAL AND ARRAY MODELS

Consider that P (P < N) incoherent narrowband signal sources
impinge a sensor array of N -sensors from directions (θ, φ) =
{(θ1, φ1), . . . , (θp, φp)}, where θ ∈ [0, π] and φ ∈ [0, 2π)
represent the elevation and azimuth angle, respectively. Moreover,
assume that K snapshots are collected by the array. The element-
space array output matrix X ∈ C

N×K is given by

X = A(θ, φ)S + N, (1)

where A(θ, φ) ∈ C
N×P represents the element-space steering

vector matrix of a sensor array, S ∈ C
P×K is the signal matrix,

and N ∈ C
N×K represents the measurement noise. The noise is

assumed to be WSS, second-order ergodic, zero-mean, spatially and
temporally white, circular complex Gaussian.
It is important to observe that in case of real-world arrays,
the response to a far-field source is an unknown quantity that
can only be estimated through calibration. Thus, in this pa-
per we consider to have a discrete and noise corrupted version
A(θc, φc) ∈ C

N×QeQa of the array manifold, obtained by array
measurements. In other words, we assume that the array manifold
is not known explicitly (similarly to the case of real-world arrays).
Here, θc = [θa, . . . , θQe

]T ∈ R
Qe×1 and φc = [φa, . . . , φQa

]T ∈
R

Qa×1 denote the measurement angles in elevation and azimuth,
respectively.

III. MANIFOLD SEPARATION TECHNIQUE USING 2-D
EADF

In this section we extend the Manifold Separation Technique
(MST) [3], [4] by using the 2-D Effective Aperture Distribution
Function (EADF), i.e. 2-D IDFT of the calibration data [3]. In
particular, we express the array steering vector a(θ, φ) ∈ C

N×1 as
the product of a sampling matrix and two Vandermonde vectors.
Interestingly, the sampling matrix depends only on the sensor array
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Fig. 1. The geometry of the sensor array considered in this paper
and the 2-D noisy EADF of the sensor with largest radius, are
illustrated in (a) and (b)-(c), respectively. We assumed that the
sensor array was calibrated at Qe = Qa = 60 points with SNR
= 30 dB. The magnitude of the 2-D EADF is concentrated at
ma = [−5, 5] and me = [−5, 5].

configuration and its properties while the Vandermonde vectors
depends only on the wavefield.
Here, we approximate the sampling matrix by the 2-D EADF.

The 2-D EADF Gn ∈ C
(2Qe−2)×Qa for the nth sensor is defined

as the 2-D IDFT of the corresponding nth periodic calibration
matrix A

′

n(θ, φ) ∈ C
(2Qe−2)×Qa . Observe that the periodicity

in both elevation and azimuth is a necessary condition for the
computation of the 2-D IDFT. For the particular case of scalar
wavefields, the periodic calibration matrix can be obtained as

A
′

n(θ, φ) =

»
An(θc, φc)
A

r
n(θc, φc)

–
, (2)

whereA
r
n(θc, φc) is obtained fromAn(θc, φc) by a shift of 180◦

in azimuth and a flip in elevation, discarding the first and last row
to avoid duplication of values at the poles of the sphere. Observe
that expression (2) is different to the expressions for the vector-field
version of the EADF introduced in [8].
Once the 2-D EADF for the N sensors are obtained, the steering

vector can be modelled as

a(θ, φ) = Γd(θ, φ) + ε(Me,Ma), (3)

where

Γ =

264 vec{G1}
T

...
vec{GN}T

375 ∈ C
N×MeMa (4)

and

d(θ, φ) = d(φ) ⊗ d(θ) ∈ C
MeMa×1

. (5)

It should be noticed that the quantity ε(Me,Ma) ∈ C
N×MeMa

represents the modelling errors due to truncation of the 2-D
Fourier series representation of the array steering vector. Thus,
ε(Me,Ma) approaches zero as the number of modes (Me,Ma)
increases. Observe also that vec{Gn} stacks the matrix Gn into a
column vector and ⊗ represents the Kronecker product. Moreover,

d(θ, φ) is composed of the following Vandermonde structured
vectors

d(θ) = [ej
Me−1

2
θ
, . . . , 1, . . . , e−j

Me−1

2
θ]T ∈ C

Me×1 (6)

d(φ) = [ej
Ma−1

2
φ
, . . . , 1, . . . , e−j

Ma−1

2
φ]T ∈ C

Ma×1
. (7)

In Figure 1, the sensor array considered in this paper and a noisy
2-D EADF are illustrated. We have assumed that the array has been
calibrated with SNR = 30 dB in Qe = Qa = 60 points. The
saturation floor on the noisy 2-D EADF is due to the calibration
noise. Moreover, it can be seen that the magnitude of the 2-D EADF
is concentrated at ma = [−5, 5] and me = [−5, 5].

IV. 2-D ROOT-MUSIC FOR ARBITRARY ARRAY
CONFIGURATIONS

In this section, we show that by using the MST the 2-D
MUSIC cost function for azimuth and elevation estimation can be
reformulated as a bivariate polynomial, irrespective of the sensor
array configuration. Then, in Section V we propose a rooting-based
algorithm for joint azimuth and elevation estimation.
Let the element-space spatial covariance matrix (SCM) Rx ∈

C
N×N be given as

Rx = A(θ, φ)RsA(θ, φ)H + σ
2
ηI, (8)

where Rs ∈ C
P×P is the signal covariance matrix. Writing Rx in

terms of signal and noise subspaces and EVD we get

Rx = EsΛsE
H
s + EηΛηE

H
η , (9)

where Es ∈ C
N×P and Eη ∈ C

N×(N−P ) are the eigenvectors
spanning the signal and noise subspaces, respectively. From equa-
tions (3), (8) and (9) we can easily obtain the 2D-MUSIC cost
function

(bθ, bφ) = arg min
θ,φ

n
d(θ, φ)H

Γ
H
EηE

H
η Γd(θ, φ)

o
. (10)

Making the following substitutions ζ = ejφ, ω = ejθ , expression
(10) can be equivalently given by the following bivariate polyno-
mial

p(ζ, ω) = p(ζ)T
Cbp(ω) = 0 (11)

of degree da = 2Ma − 2 in ζ and de = 2Me − 2 in ω. Here,
p(ζ) = [ζda , . . . 1]T ∈ C

(da+1)×1 and p(ω) = [ωde , . . . 1]T ∈
C

(de+1)×1. Note also that Cb ∈ C
(da+1)×(de+1) contains the

coefficients of the bivariate polynomial. The bivariate polynomial
in equation (11) can be seen as a univariate polynomial in ζ
with coefficients which are univariate polynomials in ω. Observe
that equation (11) simplifies to the ES-root-MUSIC [3] when θ is
known.
The matrix Cb, which contains the coefficients of the bivariate
polynomial, can be obtained as

Cb(da, de) =
X
diag

nX
diag

n
Γ

H
EηE

H
η Γ, da

o
, de

o
. (12)

Here,
P
diag{·, d} represents the sum of the (block) elements of

the dth (block) diagonal. As an example, let us compute Cb(1, 1):
• Express the matrix ΓHEηE

H
η Γ in block form

Γ
H
EηE

H
η Γ =

2664
C1,1 . . . C1,Me

C2,1 . . . C2,Me

...
. . .

...
CMe,1 . . . CMe,Me

3775 (13)

and observe that
P
diag{ΓHEηE

H
η Γ, 1} = CMe,1.
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• Express the CMe,1 as

CMe,1 =

2664
c1,1 . . . c1,Ma

c2,1 . . . c2,Ma

...
. . .

...
cMa,1 . . . cMa,Ma

3775 (14)

and observe that
P
diag{CMe,1, 1} = cMa,1.

• Thus, Cb(1, 1) = cMa,1.
Equation (11) shows that the 2-D MUSIC cost function can be

represented as a bivariate polynomial, irrespective of the sensor
array configuration. However, the roots of bivariate polynomials
do not constitute isolated points as in the univariate case. As
claimed in [4], a simple rooting technique for azimuth and elevation
estimation cannot be applied to (11). While this is generally true,
in Section V we show that it is still possible to estimate azimuth
and elevation angles via polynomial rooting, thus avoiding high
complexity search-based techniques.

V. ES-PRIME FOR AZIMUTH AND ELEVATION
ESTIMATION

In this section, we propose a rooting-based (polynomial com-
plexity) algorithm for joint azimuth and elevation estimation on
sensor arrays of arbitrary configurations, thus avoiding the spectral
search-based 2-D MUSIC. The proposed Element-Space PRIME
extends the PRIME [1] (Polynomial Rooting Intersection for Mul-
tidimensional Estimation) algorithm for Uniform Planar Arrays.
Moreover, the proposed algorithm provides automatically paired
estimates, avoiding the computationally complex pairing procedure
proposed in [1].
Let us consider the bivariate polynomial in equation (11). In

order to have unique solutions for (ζ, ω), we construct a system of
two bivariate polynomial equations that vanish simultaneously for
the roots which are related with the true sources. In particular, we
decompose the noise subspace Eη into two orthogonal subspaces
E1

η and E2
η , such that

E
1
η �= E

2
η E

1
η ∪ E

2
η = Eη. (15)

Using the two orthogonal subspaces of the noise subspace, a system
of bivariate polynomial equations that vanish simultaneously for the
pair (ω, ζ) related with the DoA of the incoming signals, is given
by (

g(ζ, ω) = p(ζ)T C1
bp(ω) = 0

q(ζ, ω) = p(ζ)T C2
bp(ω) = 0,

(16)

where C1
b and C2

b are obtained from ΓHE1
η(E1

η)HΓ and
ΓHE2

η(E2
η)HΓ in a similar way as Cb.

Our goal now is to find the solutions for the system of bivariate
polynomial equations in (16). There is a rich literature for comput-
ing roots of system of polynomials; see [9] and references therein.
Since our main goal is to have a low computational complexity
technique for computing the roots, we use a combination of mul-
tipolynomial resultants [9] and EVD for jointly estimate azimuth
and elevation.
Let us consider the multipolynomial resultant formulation using

the Sylvester matrix S(ω) ∈ C
2da×2da [1], whose structure is a

double Toeplitz in ω. The multipolynomial resultant reduces the
system of bivariate polynomial equations in (16) into the following
system [9]

S(ω)u(ζ) = 0, (17)

where u(ζ) = [ζ2da−1, . . . , 1]T ∈ C
2da×1. It can be shown that

if (ω0, ζ0) is a solution of (16), S(ω0) is singular and ζ = ζ0.
This property is used to find the roots of the system of bivariate
polynomial equations in (16).

In order to find the values of ω for which S(ω) becomes singular,
let us express S(ω) as a matrix polynomial

S(ω) =

deX
i=0

Siω
i
. (18)

The values for which S(ω) becomes singular correspond to the
roots of det{S(ω)}, which in turn can be obtained from the
generalized eigenvalues of the block companion matrix pencil
(C0,C1). More precisely, det{S(ω)} = det{C0 − ωC1}, where
C0 ∈ C

2dade×2dade and C1 ∈ C
2dade×2dade are given in [9].

Thus, the ω coordinates are found as the solutions of

C0v = ωC1v. (19)

Interestingly, if ω1 is a generalized eigenvalue of (C0,C1), the
corresponding eigenvector has the form [9]

v1 = [ωu(ζ), . . . ωdeu(ζ)]T ∈ C
2dade×1 (20)

and the ζ1 coordinate can be found as

ζ1 =
v1(1)

v1(2)
, (21)

where v1(n) represents the nth element of the vector v1.
Let ψ = [ω ζ] ∈ C

2dade×2 represent the (paired) roots of
(16), which were obtained from (19) and (21). The P roots which
are related with the signals DoA are identified by selecting the
ones with magnitude simultaneously closest to both (ω and ζ) unit
circles.
As shown in [1], the error variance of the estimates provided
by the PRIME algorithm, and consequently by the proposed ES-
PRIME, do not attain the Cramér-Rao Lower Bound (CRLB). Thus,
if statistical optimality is the goal, the computationally efficient
MVP proposed next should be considered.

VI. MST-BASED MVP FOR AZIMUTH AND ELEVATION
ESTIMATION

In this section, we reformulate the Weighted Subspace Fitting
(WSF) [2] cost function for azimuth and elevation estimation using
the MST (Section III). Moreover, we propose a computationally
efficient MVP algorithm for the minimization of the novel cost
function.
Let γ = [θ, φ]T ∈ R

2P×1. The proposed MST-based WSF cost
function for azimuth and elevation estimation is given by

f(γ) = Tr{Π⊥
ΓDEsWE

H
s }, (22)

where Tr{·} represents the trace operator and W = (Λs −
σ2

ηI)
2Λs

−1 ∈ C
P×P . Moreover, Π⊥

ΓD denotes the projection ma-
trix to the orthogonal complement of ΓD(θ, φ), where D(θ, φ) =
D(θ)♦D(φ) and ♦ represents the Khatri-Rao product.
The proposed MST-based MVP is a Newton-based method that
minimizes (22) by iterating

bγi+1 = bγi − μi(∇
2
f(γ))−1∇f(γ), (23)

where μi < 1 ∈ R is a coefficient used to adjust the step size in
order to ensure convergence. In equation (23), ∇f(γ) ∈ R

2P×1

represents the gradient and ∇2f(γ) ∈ R
2P×2P the approximate

Hessian of the cost function. The expressions for the gradient and
approximate Hessian are given by

∇f(γ) =

»
∇θf(γ)
∇φf(γ)

–
(24)

and

∇2
f(γ) =

»
∇2

θθf(γ) ∇2
θφf(γ)

∇2
φθf(γ) ∇2

φφf(γ)

–
. (25)
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Fig. 2. Statistical performance of the proposed MST-based MVP for
joint (a) elevation and (b) azimuth estimation when applied to the
array given in Fig. 1, whose structure was not explicitly known.
The initial estimates were obtained by the proposed ES-PRIME
algorithm while the final estimate was obtained after 3 iterations of
(23). The proposed algorithm attains the CRLB for both elevation
and azimuth angles.

The gradient and each entry of the Hessian are found by substituting
(a ↔ φ,a ↔ θ) and (b ↔ φ,b ↔ θ) into the following
expressions

∇af(γ) = −2	{diag{(ΓD)†UsWU
H
s

(I − ΓD(ΓD)†)ΓḊa}} (26)

∇2
abf(γ) = 2	{[ḊH

b Γ
H(I − ΓD(ΓD)†)ΓḊa]T


 [(ΓD)†UsWU
H
s ((ΓD)†)H ]}. (27)

For the particular case of (a ↔ θ), Ḋθ = Ḋ(θ)♦D(φ) and
Ḋ(θ) = [ ∂d(θ1)

∂(θ1)
, . . . ,

∂d(θP )
∂(θP )

] ∈ C
N×P . Moreover, 
 denotes the

Schur-Hadamard product and (·)† represents the Moore-Penrose
pseudo-inverse.
Unlike the conventional WSF [2], the proposed cost function

(22) has information about the array non-idealities, making it more
suitable for real-world arrays. Moreover, the proposed MST-based
MVP yields significant computational benefits with respect to its
conventional version [2], since we get closed-form expressions
for the derivatives of the WSF cost function even in scenarios
where only array calibration measurements is obtained (real-world
sensor arrays). Further computational savings can be obtained by
exploiting the inherent Vandermonde structure of the proposed
MVP [10]. Notice that the initial value for the iterations in (23)
should be ”good enough” in order to avoid convergence to a local
minimum instead of global optimum. The proposed rooting-based
ES-PRIME should be the method of choice for the initial value.

VII. SIMULATION RESULTS
In this section we present simulation results illustrating the sta-
tistical performance of the proposed algorithms. We have assumed
that two uncorrelated sources impinge the sensor array shown in
Fig. 1(a) from {(θ1 = 10◦, φ1 = 20◦), (θ2 = 50◦, φ2 = 40◦)} and
that K = 200 snapshots were collected at the array output. This
corresponds to a high-resolution scenario since the conventional
beamformer is not able to resolve the DoAs. It is important to
observe that the proposed algorithms only exploited the noisy
calibration data of the sensor array, thus the array manifold was
not explicitly known.
In Fig. 2, the statistical performance of the proposed MST-based
MVP is shown. The RMSE was obtained after 500 independent
Monte Carlo realizations. The initial estimates were obtained by
the proposed ES-PRIME algorithm while the final estimate was
obtained after 3 iterations of (23). The proposed algorithm shows
a performance close to the CRLB in both elevation and azimuth.

VIII. CONCLUSIONS
In this paper two novel algorithms for elevation and azimuth es-
timation on arbitrary array configurations (possibly with imperfec-
tions) have been proposed. The proposed algorithms are based on
the recently proposed MST. Unlike the search-based 2-D MUSIC,
the proposed ES-PRIME jointly estimate elevation and azimuth
with polynomial complexity. The proposed MST-based MVP is
also a computationally efficient algorithm (wrt the conventional
MVP) due to the convenient expressions for the derivatives of the
WSF cost function and Vandermonde structure. We have applied
the algorithms to a sensor array of arbitrary configuration (whose
structure was not explicitly known) and shown that the proposed
MST-based MVP attains the CRLB.
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