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ABSTRACT

Noise suppression by linear filters for a time series is dis-

cussed. We propose a method for jointly estimating signal and

noise correlation matrices by incorporating steering vectors

of the noise or eigenvectors of the noise correlation matrix as

well as steering vectors of the target signals. Our estimates

bring us two significant advantages. One is reduction of com-

putational cost in obtaining the Wiener filter since the Wiener

post filter, which is combined to the minimum variance dis-

tortionless response filter (MVDRF), is no longer needed with

the estimates of signal and noise correlation matrices. The

other is an improvement of the performance of the MVDRF

since we can construct the regularized version of it with an

estimate of the noise correlation matrix.

Index Terms— noise suppression, linear filter, correla-

tion matrix, Wiener filter

1. INTRODUCTION

Noise suppression for a time series is one of important topics

in the field of speech and acoustic signal processing. As well

known, one of popular methods for suppressing additive noise

is the spectral subtraction (SS). Although this method effec-

tively suppresses the noise, we have some difficulties to use

it since it requires an estimate of the power of the noise and

may generate a particular noise so-called ’a musical noise’.

A sensor-array-based noise suppression scheme is known as

one of resolutions for these problems. The minimum vari-

ance distortionless response filter (MVDRF) and the Wiener

filter (WF), which is implemented as the combination of the

MVDRF and the Wiener post filter (WPF), are representative

ones in the scheme. One of common and remarkable features

of these methods is that they do not require the correlation

structure of the noise.

Recently, Ono et al. clarified that eigenvectors of noise

correlation matrices for diffuse noise fields are invariant with

specific crystal-shape arrays [1, 2, 3]. On the basis of the

knowledge, they also succeeded in improving the performance

of the WF. Moreover, recent progress in DOA estimation en-

ables us to obtain accurate steering vectors for isolated noise

sources. As shown above, there exist cases where we have

partial information of noise correlation matrices.

In this paper, we propose a method for jointly estimat-

ing signal and noise correlation matrices by using the partial

information of the noise correlation matrix such as the eigen-

vectors of the noise correlation matrix or the steering vectors

of the noise. We also discuss two significant advantages that

these estimates may bring us. One is reduction of computa-

tional cost in obtaining the WF since we can directly design

the WF with these estimates, which implies that the WPF is

no longer needed. The other is an improvement of the perfor-

mance of the MVDRF since we can construct the regularized

version of it with an estimate of the noise correlation matrix.

2. INVERSE FILTERING

Let n, m (m ≤ n), and t be the number of observations, the

number of target signals, and the time index (or the frame in-

dex in the short time Fourier domain), respectively. Let s(t) ∈
Cm, n(t) ∈ Cn, and A ∈ Cn×m be an unknown target signal

vector, an observation noise vector, and an given observation

matrix consisting of steering vectors of s(t) (or corresponding

to a mixing matrix related with impulse responses between

the sources and the sensors) with rank(A) = m, where Cn

and Cm are n-dimensional and m-dimensional unitary spaces

called the observation signal space and the original signal

space. Note that we omit the frequency bin index since the

following contents does not depend on it. We assume that

an observation vector x(t) ∈ Cn is given by the following

model:

x(t) = As(t) + n(t). (1)

The aim of the inverse filtering is to obtain the signal y(t)
written as

y(t) = Wx(t), (2)

that is as closer to s(t) as possible, where the matrix W ∈
Cm×n denotes an inverse filter of A.

The MVDRF is one of popular inverse filters and is de-

fined as

WMV DRF = argminW En||Wx(t)||2 (3)
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subject to WA = Im, where En, || · ||, and Im denote the

mathematical expectation over n, the Euclidean norm of a

vector, and the identity matrix of degree m, respectively. The

closed-form solution of the MVDRF is written as

WMV DRF = (A∗X−1A)−1A∗X−1, (4)

where X denotes the correlation matrix of the observations

x(t) and the superscript ∗ denotes the adjoint (conjugate and

transposition) operator. In general, the observation noise n(t)
is usually uncorrelated with the target signals s(t). In such

a case, the MVDRF is identical to the best linear unbiased

estimator[4](BLUE) written as

WBLUE = (A∗Q−1A)−1A∗Q−1, (5)

where Q denotes the correlation matrix of the noise, which

means that the MVDRF can minimize the variance of the

noise without the information of the noise correlation ma-

trix when the noise is uncorrelated with the target signals.

Since the MVDRF is an unbiased estimator, the variance of

the noise in the restored signal can not fall below the Cramer-

Rao bound[5]. Thus in order to suppress the variance of the

noise more effectively, we have to relax the unbiasedness of

the solution. The parametric projection filter[6](PPF) may be

one of the resolutions for the problem, which is a regularized

version of the MVDRF in which the unbasedness of the solu-

tion is relaxed. The PPF is defined as

WPPF

= argminW [tr{(WA − Im)(WA − Im)∗}
+ γEn||Wn(t)||2], (6)

where γ denotes a positive parameter that controls the trade-

off between two terms in the criterion, and its closed-form

solution is written as

WPPF = A∗(AA∗ + γQ)−1. (7)

The closed-form solution Eq.(7), however, requires the esti-

mate of the noise correlation matrix.

The WF is also a popular inverse filter and is defined as

WWF = argminW Es,n||Wx(t) − s(t)||2, (8)

where Es,n denotes the mathematical expectation over s and

n. The closed-form solution of the WF is written as

WWF = RA∗(ARA∗ + Q)−1 = RA∗X−1, (9)

where R denotes the correlation matrix of the target signals.

In this paper, we assume that target signals are mutually un-

correlated, which implies that R is diagonal. The WF can be

also represented by the combination of the MVDRF and the

Wiener post filter (WPF) written as

WWF = WWPF WV MDRF , (10)

where the WPF is written as

WWPF = RY −1 (11)

with Y denoting the correlation matrix of the output of the

MVDRF. We can effectively reduce the computational cost

by this representation when we apply the WF adaptively to

non-stationary target signals in case of m < n. As shown

in Eqs.(9), (10) and (11), the WF requires the estimate of

the correlation matrix of the target signal vector. In case of

m = 1, Zelinski estimated the power of the target signal by

the non-diagonal elements of the correlation matrix of the ob-

servations in [7], incorporating the fact that the cross-power

spectral of the noise is nearly equal to zero when the distance

between two sensors are far enough. However, this require-

ment for the sensors prevents us from adopting the method for

signals including high-frequency components. On the other

hand, Ono et al. clarified that eigenvectors of noise correla-

tion matrices for diffuse noise fields are invariant with specific

crystal-shape arrays [1, 2, 3]. On the basis of the knowledge,

they succeeded in accurately estimating the power of the tar-

get signal in case of m = 1 even if the distance between

sensors are comparatively small.

The WF has one more representation written as

WWF = (A∗Q−1A + R−1)−1A∗Q−1 (12)

as shown in [8]. Please refer to [8] for more details of the re-

lationship between Eqs.(9) and (12). The computational cost

for obtaining this representation is less than the representa-

tion of the combination of the MVDRF and the WPF since the

computational cost to obtain Eq.(12) is nearly equal to that of

the MVDRF and we do not have to calculate the signal cor-

relation matrix Y of the output of the MVDRF. However, the

representation Eq.(12) requires the estimate of the noise cor-

relation matrix while the former two representations do not

require it. A simple and straight-forward way to obtain an

estimate of Q is calculating

Q̂ = X − AR̂A∗, (13)

where R̂ denotes an estimate of R. However, this estimate

may be unreliable since all the errors are integrated to Q̂.

3. JOINT ESTIMATION OF SIGNAL AND NOISE
CORRELATION MATRICES

As shown in the previous section, Ono et al. proposed a

method for estimating the power of the target signal in case

of m = 1, incorporating the given eigenvectors of the noise

correlation matrix with crystal-shape arrays. Moreover, re-

cent progress in DOA estimation enables us to obtain accu-

rate steering vectors for isolated noise sources. Thus, there

exist cases where we have partial information of noise corre-

lation matrices. In this section, we discuss the joint estimation
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of signal and noise correlation matrices with the partial infor-

mation of the noise correlation matrices as well as the steering

vectors of the target signals.

We assume that the noise correlation matrix Q can be

written as

Q = PΛP ∗, (14)

where P is a given matrix and Λ denotes a diagonal matrix.

In the case of the crystal-shape arrays by Ono et al., P is the

unitary matrix consisting of the eigenvectors of the noise cor-

relation matrix. In the case where we have all steering vectors

of the noise, P is the matrix consisting of the steering vectors.

It is obvious that the correlation matrix of the observations can

be written as

X = ARA∗ + PΛP ∗, (15)

where A and P are known a priori. Here, we introduce some

useful notations and a proposition.

Definition 1 [9] Let A = [a1, . . . , am], ai ∈ Cn, then the
’vec’-ed version of A is defined as

vec(A) = [a∗
1, . . . , a

∗
m]∗ ∈ Cmn. (16)

Definition 2 [9] Let A ∈ Cp×q and B ∈ Cm×n be arbitrary
matrices and B = (bij), then the Kronecker product of B and
A is defined as

B ⊗ A =

⎡
⎢⎣

b11A · · · b1nA
...

. . .
...

bm1A · · · bmnA

⎤
⎥⎦ ∈ Cpm×qn. (17)

Theorem 1 [9] Let A, B, and C be arbitrary matrices such
that the product ABC is defined. Then,

vec(ABC) = (C ′ ⊗ A)vec(B) (18)

holds, where the superscript ′ denotes the transposition oper-
ator.

Applying Theorem 1 to Eq.(15) yields

vec(X) = (A ⊗ A)vec(R) + (P ⊗ P )vec(Λ), (19)

where X denotes the conjugate of X . Let Zm denotes the

linear operator that extracts only non-diagonal elements from

’vec’-ed version of an m-dimensional square matrix. For in-

stance Z3 is written as

Z3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20)

Since R and Λ are diagonal, they must satisfy

Zmvec(R) = 0, (21)

Znvec(Λ) = 0, (22)

where 0 denotes the zero vector with an appropriate size.

Thus, the unknown vectors vec(R) and vec(Λ) must satisfy

the equation

G

[
vec(R)
vec(Λ)

]
=

⎡
⎣ vec(X)

0
0

⎤
⎦ , (23)

where

G =

⎡
⎣ (A ⊗ A) (P ⊗ P )

Zm O
O Zn

⎤
⎦ (24)

and O denotes the zero matrix with an appropriate size. The

least-squares minimum norm solution of Eq.(23) is given by

[
vec(R̂)
vec(Λ̂)

]
= G+

⎡
⎣ vec(X)

0
0

⎤
⎦ , (25)

where the superscript + denotes the Moore-Penrose general-

ized inverse[4]. Note that the matrix G is usually of full col-

umn rank except the special cases such as A and P share the

same steering vectors. Thus, Eq.(25) gives an unbiased esti-

mator in many practical cases. Finally R̂ gives an estimate of

R and P Λ̂P ∗ gives an estimate of Q.

4. COMPUTER SIMULATIONS

In this section, we numerically investigate the accuracy of the

proposed estimates and the performance of inverse filters us-

ing our estimates. Let m = 1, n = 4, and we randomly

generate the matrices A, Q, and R. The condition m = 1
is needed for comparison with the Ono’s method[3], in which

the power of the target signal is estimated by the least-squares

scheme using non-diagonal elements of the correlation matrix

of the observations transformed by the given eigenvectors of

the noise correlation matrix. We also generate 1-dimensional

and 4-dimensional i.i.d. zero-mean white noises with 10, 000
samples, written as ε1(t) and ε4(t) with the unit variance and

generate s(t) and n(t) by

s(t) = R1/2ε1(t), (26)

n(t) = Q1/2ε4(t). (27)

Note that the correlation matrices of s(t) and n(t) calculated

by using Eqs.(26) and (27) are not exactly identical to R and

Q due to a small deviation of the white noises.

In case of m = 1, the constraint Eq.(21) vanishes. Thus

the accuracy of the estimated R by the proposed method is

identical to that based on Ono’s method. We show the aver-

aged accuracy (with the standard deviation) of the estimate Q̂
evaluated by

J(Q̂) =

√
tr[(Q − Q̂)2]√

tr[Q2]
(28)
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Table 1. Estimation accuracy of Q̂ with respect to the SNR

of the observations.

SNR of obs. Conventional Proposed

-15(dB) 0.0167 ± 0.0074 0.0144 ± 0.0074

-12(dB) 0.0171 ± 0.0075 0.0146 ± 0.0075

-9(dB) 0.0178 ± 0.0076 0.0151 ± 0.0077

-6(dB) 0.0190 ± 0.0081 0.0161 ± 0.0081

-3(dB) 0.0210 ± 0.0092 0.0176 ± 0.0090

0(dB) 0.0245 ± 0.0114 0.0203 ± 0.0109

3(dB) 0.0300 ± 0.0153 0.0245 ± 0.0142

6(dB) 0.0386 ± 0.0213 0.0311 ± 0.0195

9(dB) 0.0515 ± 0.0301 0.0411 ± 0.0274

12(dB) 0.0703 ± 0.0427 0.0558 ± 0.0387

15(dB) 0.0975 ± 0.0606 0.0771 ± 0.0547

Table 2. Performance of inverse filters with the proposed es-

timates.

SNR of obs. sWFP − sWFC , sWFT − sWFC

-15(dB) 0.0030 ± 0.0617 0.6224 ± 2.4118

-12(dB) 0.0019 ± 0.0920 0.5306 ± 2.2378

-9(dB) 0.0062 ± 0.1587 0.4870 ± 2.1565

-6(dB) 0.0195 ± 0.2696 0.4950 ± 2.1807

-3(dB) 0.0424 ± 0.4003 0.5603 ± 2.3172

0(dB) 0.0753 ± 0.5265 0.6916 ± 2.5693

3(dB) 0.1216 ± 0.6709 0.9049 ± 2.9383

6(dB) 0.1780 ± 0.8704 1.2234 ± 3.4211

9(dB) 0.2458 ± 1.1298 1.6767 ± 4.0088

12(dB) 0.2864 ± 1.8839 2.2995 ± 4.6865

15(dB) 0.3249 ± 2.5902 3.1312 ± 5.4321

over 1, 000 trials in Table 1 for the proposed estimate and the

conventional estimate shown in Eq.(13) with respect to the

SNR of observations. According to Table 1, we can confirm

that the proposed estimate of Q is better than the simple sub-

traction shown in Eq.(13).

Next, we investigate the performance of the inverse filters

using the proposed estimates. Due to the page limitation, we

concentrate the performance of the WF. Let sWFC
, sWFP

,

and sWFT be the SNRs of the Wiener filters implemented by

the combination of the MVDRF and the WPF, Eq.(12) with

our estimates, and Eq.(12) with the true R and the true Q. Ta-

ble 2 shows the averaged values (with the standard deviation)

of sWFP − sWFC and sWFT − sWFC over 1, 000 trials with

respect to the SNR of the observations. According to Table 2,

the restored result by the WF with our estimates slightly out-

performs the WF with conventional estimates. The difference

from the WF with true correlation matrices is still large. How-

ever, this result seems to be fair since we can adopt Eq.(12)

whose computational cost is comparatively small as the WF

with the estimate of Q.

5. CONCLUSION

In this paper, we proposed a method for jointly estimating the

signal and the noise correlation matrices for a linear inversion

problem of a time series, incorporating the partial information

of the noise correlation matrix as well as the steering vectors

of the target signals. We also investigated the performance of

the estimates by computer simulations and confirmed that the

results are fair.
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