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ABSTRACT

This paper addresses the problem of direction-of-arrival (DOA) esti-
mation of quasi-stationary signals, which finds applications in array
processing of speech and audio. By studying the subspace structures
of the local second-order statistics (SOSs) of quasi-stationary sig-
nals, we develop a Khatri-Rao (KR) subspace approach that has two
notable advantages. First, the approach can operate in underdeter-
mined cases. It is proven that if N is the number of sensors in the
array, then the proposed approach can identify up to 2N − 2 source
DOAs in an unambiguous fashion. Second, the approach can handle
the problem of unknown noise covariance. Essentially, the KR sub-
space formulation is found to provide a simple and effective way of
annihilating the (unknown) noise covariance from the observed sig-
nal SOSs. Simulation results, with an emphasis on underdetermined
and colored-noise cases, illustrate that the KR subspace approach
provides promising mean square estimation error performance.

Index Terms— quasi-stationary signals, Khatri-Rao product,
Kruskal rank, underdetermined DOA estimation.

1. INTRODUCTION

This paper concentrates on a direction-of-arrival (DOA) estima-
tion problem where the source signals are assumed quasi-stationary.
Quasi-stationary signals represent a class of non-stationary signals
in which the statistics are locally static over a short period of time,
but exhibit differences from one local period to another. Speech and
audio signals, for instance, are often recognized as quasi-stationary
signals. In fact, DOA estimation of audio signals has a practically
very relevant application where the objective is to monitor birds in an
airport for avoiding collisions of birds and aircrafts [1]. It also finds
applications in microphone array processing of speech signals [2].
These real-world applications provide strong motivations for study-
ing direction finding of quasi-stationary signals (DF-QSS).

The DF-QSS approach proposed in this paper is based on ex-
ploitation of the subspace structures of the time-variant second-order
statistics (SOSs) of quasi-stationary signals. While the time-variant
SOS natures of quasi-stationary signals have also been utilized in
the topic of blind source separation (BSS); e.g., [3–5], the proposed
DOA estimation criterion is different from those available in BSS,
such as parallel factor analysis (PARAFAC) and joint diagonaliza-
tion (JD). Basically, the difference lies in that our approach uses
subspace concepts in lieu of data fitting. As we will see later, the
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key part of our subspace approach is in using the subspace charac-
teristics of the self Khatri-Rao (KR) product of the array response.
Hence, we call the proposed approach a KR subspace approach. In
the applications of existing BSS criteria (such as PARAFAC and JD)
to DF-QSS, we are faced with a multi-dimensional nonlinear min-
imization problem. Under the common assumption of uniform lin-
ear array structures, the KR subspace approach is a one-dimensional
search problem and can be effectively realized using methods such
as the popular MUSIC algorithm1.

We show that the KR subspace approach has two advantages.
First, it is proven through an identifiability analysis that for an N -
element array, a KR subspace method can handle up to 2N − 2
sources. This is a significant improvement, compared to the conven-
tional subspace DF approach where the identifiability limit isN − 1
sources. Second, the KR subspace formulation naturally provides
an effective way of eliminating the spatial noise covariance from the
observed SOSs. It does so without any knowledge of the noise co-
variance, meaning that we can deal with unknown, possibly colored
spatial noise covariance. The above two attractive features will be
validated by simulations.

2. PROBLEM STATEMENT

We consider a standard DOA estimation scenario where K narrow-
band far-field sources are observed by an N -element uniform linear
sensor array. We denote by xn(t) the observed signal of the nth
sensor, and sk(t) the signal emitted by the kth source. By letting
x(t) = [ x1(t), . . . , xN(t) ]T and s(t) = [ s1(t), . . . , sK(t) ]T , the
received signal is modeled as

x(t) = As(t) + v(t), t = 0, 1, 2, . . . (1)

Here, v(t) ∈ C
N represents the spatial noise,

A = [ a(θ1), . . . , a(θK) ] ∈ C
N×K (2)

is the array response matrix where θk ∈ [−π

2
, π

2
] is the direction of

arrival (DOA) of source k, and

a(θ) = [ 1, e−
j2πd

λ
sin(θ), . . . , e−

j2πd
λ

(N−1) sin(θ) ]T , (3)

is the steering vector function with parameters d and λ being the
inter-sensor spacing and the signal wavelength respectively. Some
basic assumptions are made as follows:

(A1) The source signals sk(t), k = 1, . . . , K, are mutually uncor-
related and have zero-mean.
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(A2) The source DOAs θk, k = 1, . . . , K, are distinct to one an-
other, i.e., θk �= θ� for all k �= �.

(A3) The noise v(t) is zero-mean wide-sense stationary (WSS)
with covariance matrix C � E{v(t)vH(t)}, and it is sta-
tistically independent of the source signals.

In addition, we adopt the following QSS assumption [3, 4]:
(A4) Each source signal sk(t) is wide-sense quasi-stationary with

frame length L; that is, form = 1, 2, . . . ,

E{|sk(t)|2} = dmk, ∀t ∈ [(m− 1)L, mL− 1]. (4)

An illustration is given in Fig. 1 to pictorially show how a quasi-
stationary signal may behave. Assumption (A4) means that the sec-
ond order statistics of the source signals are time-varying, but that
they remain static over a short period of time.

( )ks t

L 2L 4L3L

Fig. 1: Illustration of quasi-stationary signals.

Under (A4), we can define a local covariance matrix

Rm = E{x(t)xH(t)}, ∀t ∈ [(m− 1)L, mL− 1], (5)

wherem = 1, 2, . . . denotes the frame index. In practice, knowledge
of these local covariances are acquired by local time averaging; i.e.,
R̂m = 1

L

∑mL−1
t=(m−1)L x(t)xH(t). With (A1), (A3) and (A4), we

can expressRm as

Rm = ADmA
H + C (6)

where Dm = Diag(dm1, dm2, . . . , dmK) ∈ R
K×K is the source

covariance matrix at frame m. Now, suppose that we have acquired
local covariance matrices R1, . . . ,RM , where M is the total num-
ber of frames. Our goal is to estimate the DOAs θ1, . . . , θK from
R1, . . . ,RM , without information of the local source covariances
D1, . . . , DM and the noise covariance C.

3. KHATRI-RAO SUBSPACE APPROACH

3.1. Khatri-Rao Product

We first review the Khatri-Rao product and its properties, before pro-
ceeding to describing the proposed KR subspace approach.

Given two matrices A ∈ C
n×k and B ∈ C

m×k of identical
number of columns, their Khatri-Rao (KR) product is denoted by

A�B = [ a1 ⊗ b1, . . . , ak ⊗ bk ] ∈ C
nm×k, (7)

where ⊗ denotes the Kronecker product. For two vectors a ∈ C
n

and b ∈ C
m, the Kronecker product is given by

a⊗ b =

⎡
⎢⎢⎢⎣

a1b

a2b
...

anb

⎤
⎥⎥⎥⎦ = vec(ba

T ) (8)

where vec(·) is the vectorization.
The rank properties of KR product has interesting relationships

withKruskal rank, or k-rank for short. The k-rank of a matrixA, de-
noted by krank(A), is said to be equal to r when every collection of
r columns ofA is linear independent but there exists a collection of
r+1 linearly dependent columns. k-rank presents stronger condition
than the standard rank, and thus we have rank(A) ≥ krank(A). A
k-rank property for KR product is as follows [6]:

Property 1 For two matrices A ∈ C
n×k and B ∈ C

m×k , with
krank(A) ≥ 1 and krank(B) ≥ 1, it holds true that

krank(A�B) ≥ min{k, krank(A) + krank(B)− 1}. (9)

3.2. Khatri-Rao Subspace Criterion and Algorithm

We now consider the DOA estimation problem formulated in Sec. 2.
The local covariance model in (6) can be expressed as

ym � vec(Rm) = vec(ADmA
H) + vec(C)

=
K∑

k=1

dmkvec(a(θk)aH(θk)) + vec(C)

= (A∗ �A)dm + vec(C) (10)

where (10) is due to (8). Here we have dm = [ dm1, . . . , dmK ]T .
By stacking [ y1, . . . ,yM ] � Y, we can write

Y = (A∗ �A)ΨT + vec(C)1T
M (11)

where 1M = [ 1, . . . , 1 ]T ∈ R
M , and

Ψ = [ d1, . . . , dM ]T =

⎡
⎢⎢⎢⎣

d11 d12 · · · d1K

d21 d22 · · · d2K

...
...

. . .
...

dM1 dM2 · · · dMK

⎤
⎥⎥⎥⎦ . (12)

It is interesting to note from (10) or (11) that ym is reminiscent of an
array signal model where (A∗�A) ∈ C

N2×K is virtually the array
response matrix and dm becomes the source signal vector. The vir-
tual array dimension, given byN2, is greater than the physical array
dimensionN forN > 1, and simply speaking that is the reason why
underdetermined DOA estimation is possible.

We notice that in (12), each column of Ψ describes the power
variations of the respective source signal over frames. Let us assume
the following:
(A5) The matrix [ Ψ 1M ] ∈ R

M×(K+1) is of full column rank.
Assumption (A5) physically implies the followings: First, the source
power distributions over the time frames (or the columns of Ψ)
are different so that Ψ can maintain a full column rank condition.
Second, any linear combination of the sources cannot result in a
WSS source (i.e., for any c1, . . . , cK ∈ C,

∑K

k=1 cksk(t) cannot
be WSS), otherwise 1M can be a linear combination of the columns
of Ψ which violates (A5). As a necessity for fulfilling (A5), we
needM ≥ K + 1. In practice, this should not be an issue since the
number of available framesM is generally large.

Under (A5), we can eliminate the unknown noise covariance ef-
fectively and easily. Let P⊥

1M
= IM − 1

M
1M1T

M be the orthogonal
complement projector of 1M . By performing a projection

YP
⊥
1M

= [(A∗ �A)ΨT + vec(C)1T
M ]P⊥

1M

= (A∗ �A)(P⊥
1M

Ψ)T , (13)
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we obtain a data model that is free from the noise covariance. Under
(A5), we have rank(P⊥

1M
Ψ) = rank(Ψ) = K. In other words,

(13) does not damage the rank condition of the data model.
Let us assume that (A∗ �A) has full column rank. (In the next

subsection, further justifications on this assumption will be provided
along with the identifiability analysis.) When both A∗ � A and
P⊥

1M
Ψ in (13) have full column rank, we have

R(A∗ �A) = R(YP
⊥
1M

) (14)

where R(·) denotes the range space. Now, consider performing a
singular value decomposition (SVD) onYP⊥

1M
:

YP
⊥
1M

= [Us Un]

[
Σs 0

0 0

] [
VH

s

VH
n

]
(15)

where Us ∈ C
N2×K and Vs ∈ C

M×K are respectively the
left and right singular matrices associated with the nonzero singu-
lar values, Un ∈ C

N2×(N2−K) and Vn ∈ C
M×(N2−K) are the

counterparts for the zero singular values, and Σs ∈ R
K×K is the

nonzero singular values matrix. Using the standard SVD results that
R(A∗ �A) = R(Us) and that Un is orthogonal to Us, we con-
clude that

U
H
n [A∗ �A]k = U

H
n (a∗(θk)⊗ a(θk)) = 0 (16)

for k = 1, . . . , K. From (16) we propose a KR subspace criterion
for DOA estimation of quasi-stationary sources, given as follows:

find θ
such that UH

n (a∗(θ)⊗ a(θ)) = 0, θ ∈ [−π

2
, π

2
]

(17)

The above KR subspace criterion can be solved by a line search (as
one of the possible ways), using the same spirit as MUSIC. The re-
sultant algorithm, called KR-MUSIC here, is given in Table 1.

3.3. Identifiability

Certainly, the KR subspace criterion (17) is achieved if θ is one of the
true DOAs θ1, . . . , θK . But, the more important question is whether
(17) is satisfied only if θ is a true DOA. To answer this identifiability
question, we consider the following lemma:

Lemma 1 Consider a Vandemonde matrix

V =

⎡
⎢⎢⎢⎣

1 · · · 1
z−1
1 · · · z−1

k

...
. . .

...
z
−(n−1)
1 · · · z

−(n−1)
k

⎤
⎥⎥⎥⎦ ∈ C

n×k (18)

where z1, . . . , zk ∈ C, zk �= z� for all k �= �. The KR product
V∗ �V is of full column rank if k ≤ 2n− 1.

Proof: It has been proven in [7] that for a Vandemonde matrix
V, krank(V) = rank(V). And for distinct z1, . . . , zk, it must hold
true that rank(V) = min{n, k}. As a consequence, we have

rank(V∗ �V) ≥ krank(V∗ �V) ≥ min{ k, 2 min{n, k} − 1 }
(19)

where the last inequality is due to Property 1 and krank(V∗) =
krank(V) = min{n, k}. For 1 ≤ k ≤ 2n − 1, (19) reduces to
rank(V∗ �V) ≥ k. Hence,V∗ �V has full column rank. �

An immediate consequence of Lemma 1 is that the virtual array
response matrixA∗�A has full column rank ifK ≤ 2N−1. More
importantly, Lemma 1 leads to the following identifiability result:

Table 1: Summary of the KR-MUSIC algorithm.

Given a received signal sequence {x(t)}T−1
t=0 , a source numberK , and a

frame length L where L divides T .
Step 1. Compute the local covariance estimates

R̂m =
1

L

mL−1∑
t=(m−1)L

x(t)xH (t)

for m = 1, . . . , M , where M = T/L. Then, form a data matrix
Ŷ = [ vec(R̂1), . . . , vec(R̂M ) ].

Step 2. (noise covariance elimination) Ȳ = ŶP
⊥
1M
, where P

⊥
1M

=

IM − 1
M

1M1T
M
.

Step 3. (subspace extraction) Perform SVD Ȳ = UΣVH , and extract
the noise subspace matrix

Un = [ uK+1, . . . ,uN2 ] ∈ C
N2×(N2−K).

Step 4. (MUSIC operation) Compute the spatial spectrum

PKR-MUSIC(θ) =
1

‖ UH
n (a∗(θ) ⊗ a(θ)) ‖2

over θ ∈ [−π
2
, π

2
], and pick theK largest peaks of PKR-MUSIC(θ)

as the DOA estimates.

Proposition 1 Assume that (A1) − (A5) hold. The KR subspace
criterion (17) is achieved only by the true angles θ1, . . . , θK , when

K ≤ 2N − 2.

Proof: Suppose that there exists an angle ϕ /∈ {θ1, . . . , θK}
such that the KR subspace criterion (17) is satisfied. That implies
that a∗(ϕ)⊗ a(ϕ) ∈ R(A∗ �A), or equivalently,

[ A∗ �A, a
∗(ϕ)⊗ a(ϕ) ]

= [ A, a(ϕ) ]∗ � [ A, a(ϕ) ] ∈ C
N2×(K+1) (20)

has linearly dependent columns. But, by Lemma 1, (20) is linearly
independent ifK + 1 ≤ 2N − 1. This is a contradiction. �

Proposition 1 is an appealing result since it implies that the KR
subspace approach can identify the source DOAs even when the
number of sensors is about half of the number of the sources.

In fact, the condition K ≤ 2N − 2 is not only sufficient for the
KR subspace approach to provide unambiguous DOA identification
(as stated in Proposition 1), but it can also be proven to be a nec-
essary identifiability condition. The latter is further analyzed in [8],
but is omitted here due to limit of space.

4. SIMULATION RESULTS

We provide two simulation examples to test the performance of the
proposed KR-MUSIC algorithm.

In the first example, we consider an underdetermined case where
(N, K) = (4, 6). The true DOA values are {θ1, . . . , θK} =
{−65◦,−40◦,−20◦, 10◦, 25◦, 50◦}. Recorded speech is used as
the source signals. For ease of demonstrating the feasibility of the
technique proposed, we performed a synthetic narrowband simula-
tion with inter-sensor spacing d = λ/2, and with sk(t) being speech
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Fig. 2: DOA spectrum of KR-MUSIC for (N, K) = (4, 6). The
dashed lines mark the true positions of the DOAs.

signals. (In reality, speech signals fall into the wideband case. The
wideband array processing requires more complex processing pro-
cedures on top of KR-MUSIC, which is too lengthy to describe in
this paper. The wideband extension is considered and tested in [8].)
Noise is spatially white Gaussian. The SNR, defined as the total
signal power versus the noise power, is 20dB. The frame length is
L = 200 (which is set to be commensurate with the standard station-
ary period of speech, 25ms), and the number of frames M = 125.
Fig. 2 shows the KR-MUSIC DOA spectrum (PKR−MUSIC(θ) in
Table 1). We see that KR-MUSIC shows spectral peaks at the true
DOA positions and those peaks are quite distinguishable.

In the second example, we model the noise as spatially non-
white Gaussian where the covariance C follows the structure

Ci,k = σ2
vρ|i−k|

for some 0 ≤ ρ ≤ 1 and σv . We set up an overdetermined sit-
uation (N, K) = (4, 3), thereby enabling comparisons with the
conventional MUSIC. The true DOA values are {θ1, . . . , θK} =
{−30◦, 0◦, 30◦}. The other simulation parameter settings are the
same as those of the last example. Both MUSIC and KR-MUSIC
used the same total data length. We ran a 1000-trial Monte Carlo
simulation, and the results obtained are shown in Fig. 3. In the leg-
end, ‘colored noise’ stands for ρ = 0.8 while ‘white noise’ ρ = 0.
We observe the followings: At very high SNRs, the mean square er-
ror (MSE) of the angle estimates of KR-MUSIC or MUSIC can no
longer improve. That is due to the finite sample covariance estima-
tion errors which may be reduced by using a larger L or M . In the
presence of white noise, the conventional MUSIC yields better per-
formance than KR-MUSIC by about 1dB in MSE. However, in the
presence of colored noise, MUSIC is seen to exhibit substantial per-
formance degradation at low SNRs. For KR-MUSIC, the MSEs in
the colored and white noise cases are almost the same. This indicates
that KR-MUSIC is insensitive to noise covariance. In particular, in
the colored noise case, KR-MUSIC yields considerably better MSE
performance than MUSIC at low to moderate SNRs.

5. CONCLUSION AND DISCUSSION

We have presented a KR subspace approach to DOA estimation
of quasi-stationary signals. The proposed approach is effective in
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Fig. 3: Mean square error performance of KR-MUSIC and MUSIC.

implementations, can deal with underdetermined DOA estimation
cases, and can cope with the effects of unknown noise covariance.
These benefits are obtained by carefully utilizing the subspace struc-
tures of the SOSs of quasi-stationary signals.

The full version of this paper [8] provides more results. For
instance, we describe an additional dimension reduction method that
improves upon the algorithm proposed here. Moreover, numerical
comparisons with other existing underdetermined DOA estimation
methods such as [9] (not based on quasi-stationarity) are given.
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