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ABSTRACT

Based on the CRB of the 2D-DOA estimation problem, we

prove a condition on the sensor coordinates of a planar ar-

ray to be ambiguity-free and isotropic. A systematic search

of such antenna arrays is conducted leading to the identifica-

tion of all possible ambiguity-free isotropic arrays. In partic-

ular, we select the arrays that outperform the popular Uniform

Circular Array (UCA). It is shown that these arrays allow to

enhance the DOA estimation by as much as 25%, in compar-

ison with UCA. As the number of sensors increases, the best

isotropic array tends towards the non-intuitive V-shape.

Index Terms— Direction of arrival estimation

1. INTRODUCTION

This paper deals with the direction finding problem, where

data collected by a set (array) of sensors is used to infer about

the direction of arrival (DOA) of the emitting narrow-band

source [1]. A central result in DOA estimation is the Cramer-

Rao Bound (CRB) that expresses the minimum achievable

mean square error (MMSE) on the azimuth and elevation an-

gles. The matrix-valued CRB was originally proposed in the

form of a sophisticated expression [2, 3] before being greatly

simplified in [4]. There, it was shown to be merely a cosine

function, leading to a rich interpretation about the impact of

the sensor positions on the array performance.

These results lack relevance in practice, as they do not

take into account the array ambiguity problem. The so-called

(first-order) ambiguity occurs when steering vectors relative

to two different DOAs are co-linear. A sufficient condition to

ensure ambiguity-free arrays is to keep each sensor at most

half-a-wavelength distant from its nearest neighbors [5].

The challenge, dealt with here, is how to incorporate this

condition into the CRB. We do so by imagining that the sen-

sors are placed along a curve in the plane at a regular spacing

(equal to half the wavelength). This configuration is not re-

strictive at all, and supports practically all known array con-

figurations, including the Uniform Linear Array (ULA), the

Uniform Circular Array (UCA), grid arrays, etc.

The CRB from [4] serves as the starting point. Thanks to

the above modeling, it is now a function of bounded (angular)

parameters, and so, lends itself easily to numerical computa-

tion and optimization. In particular, isotropy is met if these

parameters are the zeros of a multi-dimensional complex-

valued function. We manage to simplify this condition, hence

reducing the computation burden of the exhaustive search

of (all possible) isotropic arrays. We target, in particular,

isotropic arrays that outperform the UCA, the default choice

for isotropic arrays. These show to have geometries that are

not intuitive to guess otherwise, while, at the same time, offer

a significant (DOA estimation) gain compared to the UCA.

The paper is organized as follows. Results on the CRB [4]

are recalled in Sec. 2, then updated in Sec. 3 to include ambi-

guity constraints. In Sec. 4, a condition on the sensors is de-

rived, then simplified, that characterizes isotropic ambiguity-

free arrays. Based on this condition, a systematic search is

conducted, and results are presented in Sec. 5, with particular

attention to better-than-UCA array geometries.

2. DATA MODEL AND PREVIOUS RESULTS

A planar antenna array is made of M identical and omni-

directional sensors in the (x, y) plane. The position of the m-

th sensor is given by its polar coordinates ρm and φm to which

we associate the complex number γm=̂ρmejφm . A source lo-

cated in the far-field is characterized by its DOA angles: the

azimuth Φ and the elevation Θ as depicted in Fig. 1. When

the source emits a narrow-band signal centered at frequency

c/λ, the M -dimensional output of the antenna array can be

expressed as phased replicas of the emitted signal, as follows

x(t) =̂ [x1(t) · · ·xM (t)]T

=

⎡
⎢⎣

exp
(
2jπ ρ1

λ sin(Θ) cos(Φ − φ1)
)

...

exp
(
2jπ ρM

λ sin(Θ) cos(Φ − φM

)
⎤
⎥⎦ s(t) + n(t)

=̂ a(Φ, Θ)s(t) + n(t),

where the m-th entry of x(t) [resp. n(t)] is the signal (resp.

noise) component collected at sensor m at time index t. They

are assumed to be Gaussian-distributed, zero-mean, mutually-

independent and spatially and temporally white, with respec-

tive variances σ2
s and σ2

n.
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Fig. 1. Planar array and source DOAs.

In the single source case with N signal snapshots, the low-

est possible estimation error is expressed by the CRB [4]

C=̂
[
CΦΦ CΦΘ

CΘΦ CΘΘ

]

where

CΦΦ =
CSNR

N

1
sin2(Θ)

C (Φ)

CΘΘ =
CSNR

N

1
cos2(Θ)

C
(
Φ +

π

2

)

CΦΘ = −CSNR

N

1
sin(2Θ)

� [T2 exp(−2jΦ)]
T 2

0 − |T2|2

with CSNR=̂(σ2
n/σ2

s)
[
1 + σ2

n/(Mσ2
s)

]
/(4π2) and

C (Φ) =̂
T0 + � [T2 exp(−2jΦ)]

T 2
0 − |T2|2 ,

� (x) and � (x) being the real and imaginary parts of x, re-

spectively. The function C (Φ) depends only on the source

azimuth angle and on the geometrical parameters

T0 =̂
M∑

m=1

|γm|2 − 1
M

∣∣∣∣∣
M∑

m=1

γm

∣∣∣∣∣
2

T2 =̂
M∑

m=1

γ2
m − 1

M

(
M∑

m=1

γm

)2

. (1)

The latter, when equal to zero, indicates that the considered

array is isotropic because, then, C (Φ) is a constant (DOA-

independent), and so are all the entries of the CRB matrix.
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Fig. 2. Sensor numbering and parameters ψk.

3. AMBIGUITY-FREE ANTENNA ARRAYS

Without loss of generality, we place the first sensor at the ori-

gin, the second sensor on the x > 0 axis and the third sen-

sor in the y ≥ 0 semi-plane. Hence, γ1 = 0, γ2 = d and

� (γ3) > 0.

Now, to ensure a maximum inter-sensor spacing d (typi-

cally chosen to be equal to half a wavelength), we imagine

that the sensors are uniformly placed along a curve in the

(x, y) plane, or equivalently, that a curve can be drawn that

joins the uniformly spaced sensors, numbered 1 (placed at the

origin), 2, · · ·, M . Two consecutive sensors would, hence,

verify |γk − γk−1| = d or also

γk = γk−1 + d exp(jψk−1)

for some angle ψk−1 ∈ [−π, π[, for all k ≥ 2. The array

geometry is entirely characterized by parameters γ3, · · · , γM ,

or equivalently by angles ψ2, · · · , ψM−1, where ψ2 ∈ [0, π[
and ψk ∈ [−π, π[ for k > 2, ψ1 being equal to zero. For

k ≥ 2, we can write γk+1/d = 1 +
∑k

l=2 exp(jψl) so that

∑M
m=3 γm

d
= M − 2 +

M−1∑
m=2

(M − m) exp(jψm)

∑M
m=3 γ2

m

d2
= M − 2 + 2

M−1∑
m=2

(M − m) exp(jψm)

+
M∑

m=3

[
m−1∑
l=2

exp(jψl)

]2

.

After tedious manipulations, we obtain

M
T2

d2
= M − 1 + 2

M−1∑
m=2

(M − m)ejψm

−
[

M−1∑
m=2

(M − m)ejψm

]2

+ M
M−1∑
m=2

[
m∑

l=2

ejψl

]2

(2)
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4. AMBIGUITY-FREE ISOTROPIC ANTENNA
ARRAYS

Eqt. (2) shows how the set of parameters ψ2, · · · , ψM−1 af-

fect the directivity of the antenna array. Of interest, here, are

situations where T2 is zero, characterizing isotropic arrays.

Such isotropic arrays can be identified by evaluating the

scalar function in (2) for all possible values of the M − 2
parameters ψ2, · · · , ψM−1 and check when this happens to be

(close to) zero. To reduce the complexity of such a systematic

search, we notice that the expression in (2) is a second order

polynomial in exp(jψM−1). In fact, by denoting

U0 =̂
M−2∑
m=2

exp(jψm)

U1 =̂ 1 +
M−2∑
m=2

m exp(jψm)

U2 =̂ 1 +
M−2∑
m=2

[
m∑

l=2

exp(jψl)

]2

,

we ultimately prove that

M
T2

d2
= (M−1) exp(2jψM−1)+2U1 exp(jψM−1)+C (3)

where

C=̂M + 2MU0U1 + (M − M2)U2
0 + M(U2 − 1) − U2

1

For the array to be isotropic, exp(jψM−1) needs to be a

zero of the second order polynomial in the RHS of (3). There-

fore, it must verify

exp(jψM−1) =
−U1 ±

[
U2

1 + (1 − M)C
]1/2

M − 1

where U2
1 + (1 − M)C can be proved to be equal to

M
{
[U1 + (1 − M)U0]2 + (1 − M)U2

}
.

Finally, an array characterized by ψ2, · · · , ψM−1 is

isotropic iff ψ2, · · · , ψM−2 verify either

U1 +
√

M
{
[U1 + (1 − M)U0]2 + (1 − M)U2

}1/2
or

U1 − √
M

{
[U1 + (1 − M)U0]2 + (1 − M)U2

}1/2
has a

modulus equal to M − 1. Then, ψM−1 is given by the argu-

ment of the one among

U1 ±
√

M
{
[U1 + (1 − M)U0]2 + (1 − M)U2

}1/2

1 − M
(4)

that happens to have a modulus equal to 1.

Finding ψ2, · · · , ψM−1 satisfying (2) is zero simplifies to

finding ψ2, · · · , ψM−2 satisfying (4) has a modulus one, re-

ducing by one the dimension of the search space. In practice,

the number of sensors is limited, while, the grid resolution is

high. Consequently, this simplification significantly reduces

the complexity of the greedy search (by 360, for example, if

tested values of ψm are taken at a 1◦ interval). This taken into

consideration, complexity is not a critical issue, since we are

dealing, here, with an off-line optimization problem.

5. RESULTS OF THE SYSTEMATIC SEARCH

A greedy search is conducted over the (M − 3)-dimensional

space to determine parameters ψ2, · · · , ψM−2, characterizing

the positions of sensors 3 to M − 1 of an isotropic antenna

array. The positions of sensor 1 and 2 are fixed while that of

sensor M is completely determined by those of the remaining

sensors. Parameter ψ2 is restricted to [0, π[, while each of

ψ3, · · · , ψM−2 spans [−π, π[.
First, we evaluate two positive scalar functions

F1 (ψ2, · · · , ψM−2) = |1 − |f1 (ψ2, · · · , ψM−2) ||
F2 (ψ2, · · · , ψM−2) = |1 − |f2 (ψ2, · · · , ψM−2) ||

where f1 (ψ2, · · · , ψM−2) and f2 (ψ2, · · · , ψM−2) are de-

fined, respectively, as

U1 +
√

M
{
[U1 + (1 − M)U0]2 + (1 − M)U2

}1/2

1 − M

and

U1 −
√

M
{
[U1 + (1 − M)U0]2 + (1 − M)U2

}1/2

1 − M
.

Consecutive to the greedy search, tested (M − 3)-tuples

ψ2, · · · , ψM−2 may not exactly verify F1 (ψ2, · · · , ψM−2) or

F2 (ψ2, · · · , ψM−2) equal to zero. We pick those ψ2, · · · , ψM−2

for which either F1 (ψ2, · · · , ψM−2) or F2 (ψ2, · · · , ψM−2)
is below a predetermined threshold ε1. This (M − 3)-tuple

ψ2, · · · , ψM−2 is completed by the properly computed ψM−1.

For each picked tuple ψ2, · · · , ψM−1, we compute |T2|/T0.

The array is declared isotropic only if this ratio is below a

predetermined threshold ε2. We do so to discard situations

where not only T2, but also T0 is close to zero.

The procedure ensures an antenna array with a minimal

inter-sensor spacing lower than the specified distance d. It

does not prevent the sensors from getting very close to each

other, or even occupy the same position. After optimization,

an ad-hoc test is conducted to discard such arrays.

During the exhaustive search, arrays that outperform the

UCA are detected when the T0 parameter is larger than that of

the UCA (with the same inter-sensor spacing d), which can be

easily shown to be equal to Md2/
(
4 sin2(π/M)

)
. A better-

than-UCA array must, hence, verify

T0 >
Md2

4 sin2(π/M)
(5)

A computation search with a resolution of 2π/200 is con-

ducted with M equal to 4, 5, 6 and 7, respectively, and d =
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Fig. 3. Optimum 5, 6 and 7 sensors arrays.

λ/2. Parameters ε1 and ε2 are set to 0.01 and 0.001, respec-

tively. It is shown that other-than-UCA array geometries exist

that have an isotropic behavior. Their number increases dra-

matically as the number of sensors is incremented. To men-

tion only the better-than-UCA arrays, we find that, except for

the 4-sensors where the UCA is actually the best possible,

numerous solutions verifying (5) are detected. The best ones

(with the largest T0) are plotted in Fig. 3, where, in addition

to the sensor locations, we plot, in polar representation,

C (Φ)
CUCA (Φ)

=
M

16 sin2(π/M)T0

which is a circle contained in the unit circle. Fig. 3 suggest

that the best isotropic array tends, as the number of sensors

increases, to have a V shape. The achieved gain increases

with M to reach 25%, for M = 7.

6. CONCLUSION

A CRB that takes into account the array ambiguity problem

is developed. It yields to a condition on the sensor positions

that ensures an isotropic behavior in DOA estimation. A sys-

tematic search is conducted to check this condition over the

multi-dimensional space and, hence, identify all the possible

isotropic ambiguity-free arrays. It leads to non-trivial con-

clusions. First, array geometries that do not have a circular

symmetry may have an isotropic behavior. Second, the best

over-all array geometry has a V shape and outperforms the

UCA by 25%, in terms of DOA estimation MMSE.
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