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ABSTRACT
We consider the problem of estimating the Direction of Ar-

rival (DOA) of multiple waves incident on a single tripole

sensor. Using the physical properties of the electric and mag-

netic fields, we show that we can disambiguate the DOA of

multiple simultaneously incident waves using a set of time

sampled 3D measurements from the single sensor. This is

different from the traditional approach that uses arrays of an-

tennas to estimate DOA. We use the Unitary Matrix Pencil

method to estimate the frequencies of the waves, and use a

least squares solver to estimate the amplitude and phase coef-

ficients. We combine these to compute the DOA and evaluate

the approach using simulations. We show that the method is

very effective at estimating DOA for different numbers of in-

cident waves, and different noise levels.

Index Terms— Direction of Arrival, Radio Astronomy,

Matrix Pencil Method

1. INTRODUCTION

Radio astronomy has led to several key discoveries over the

years, as waves penetrate much of the gas and dust in space as

well as the clouds of planetary atmospheres and pass through

the terrestrial atmosphere with little distortion. There is an

overwhelming interest in the scientific community [1] to sig-

nificantly expand (by several orders of magnitude) the explo-

ration of the radio signal spectrum to image and understand

the transient sky, to probe accretion onto black holes; to iden-

tify orphan gamma-ray burst afterglows; and finally to dis-

cover new and unknown transient phenomena from currently

undiscovered celestial objects.

A key problem in this field involves identifying the di-

rection of arrival of an electromagnetic signal incident on the

radio antenna sensor - especially in the presence of multiple

such signals, interference and noise. When multiple signals

are incident on the antenna sensor, the result is a superposed

combination, making it hard to identify the individual signals

of interest. The problem of DOA estimation is related to Blind

Source Separation, that has been studied in the astronomy and

radar communities. Current approaches for DOA estimation

use a spatially distributed array of multiple sensors (anten-

nas) to disambiguate the multiple signals of interest1. With

the use a multiple sensors, various techniques are available

for DOA estimation. Prior work includes work by [2] [3] and

can be categorized into: Phase-based inteferometry methods,

Eigen decomposition methods, and machine learning tech-

niques. There is also a large body of related work on vector

sensor [4], and 2D frequency estimation [5].

Phase interferometry (PI) based methods [6] use a mea-

sured phase differences across an array of sensors to estimate

the DOA. These approaches have been successful for simpler

radar signals, and have had limited appeal in radio astron-

omy applications. Decomposition techniques [7] exploit cor-

relations inherent in time-dependent signals to estimate the

components and directions of the incoming signals. These

approaches include the Multiple Signal Classification (MU-

SIC) algorithm [8], Maximum Likelihood Methods, and the

ESPRIT algorithm for narrow-band planar signals [9]. These

approaches offer asymptotically unbiased estimates of the di-

rection of the irradiating sources, but are computationally ex-

pensive and not easily implemented in a real-time environ-

ment. The success of machine learning techniques is contin-

gent on the availability of a sufficiently large training data set,

especially for large-scale radio astronomy observations.

With the new interest in low frequency radio wave in as-

tronomy and physic, as exemplified by the Low Frequency

Array (LOFAR) with its centre in the Netherlands and the up-

coming Square Kilometre Array (SKA), we can not expect a

linear wave front through the array for all objects of interest.

Unlike these prior approaches that rely on an antenna array,

we focus on DOA estimation using a single tripole antenna.

Our work is motivated by recent advances in antenna design

that have led to the development of practical tripole anten-

nas [10] that receive all 3 components (dimensions) of the

electromagnetic signals in terms of the resulting electric field

or generated current. It has been shown [11] that for a sin-

gle incident wave, the DOA may be directly computed from

a measurement of these three components. However, when

1The number of sensors determines the accuracy of the estimate as well

as the number of individual waves that may be disambiguated.
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multiple waves with different frequencies are incident on the

antenna, the resulting superposed wave exhibits a DOA that

varies over time with a certain periodicity - even if the original

individual waves have a fixed DOA. In this paper we present

a method to disambiguate the DOA of multiple waves simul-

taneously incident on a single tripole antenna sensor. We use

multiple temporal observations of the superposed waves, and

use the Unitary Matrix Pencil (UMP) method [2] combined

with Least Squares method for linear equations to identify

the DOA for each incident wave. We present simulation re-

sults that demonstrate the technique on different number of

observed waves, as well as different noise levels and high-

light its accuracy and robustness to noise. This paper is orga-

nized as follows. We introduce our notation and background

in Section 2. We then describe the details of our algorithm in

Section 3. We present experimental results in Section 4 and

conclude in Section 5.

2. BACKGROUND AND NOTATION

The electrical components of the electromagnetic field for a

signal with a carrier frequency ν can be described by equation

(1).

�E(t) =
{
Axeiθx , Ayeiθy , Aze

iθz
}

ei(νt) (1)

where Ax, Ay, and Az represent the amplitude in the three

dimensions 2 and θx, θy and θz represent the corresponding

phase.

From the Stokes parameter V [1] which describes the cir-

cular polarisation of the wave, we can define the 3D gener-

alised vector �V as

�V (t) = − ε0
2c

Im
(

�E(t) × �E�(t) + c2 �B(t) × �B�(t)
)

(2)

�V (t) represents the DOA of the incoming radio wave,

where Im(·) represents an operator that extracts the imagi-

nary part of a vector. �B(t) is the magnetic field related the

electric field �E. We assume transversal fields, where �E(t) ×
�E�(t) � c2 �B(t) × �B�(t), which gives

�V (t) � −Im
(

�E(t) × �E�(t)
)

(3)

The equation may result in ambiguity in the estimate of

±�V (t) and non-conclusive DOA for linear waves – for which
�V = �0 – which only occur in singular situations. When

M such waves �Em are simultaneously incident on a single

antenna, the resulting superposed wave may be represented

as:

�Ec(t) =
M∑

m=1

�Em(t), (4)

2We assume these are not time varying - which is possible when the waves

have angular rotation velocity.

or

�Ec(t) =
M∑

m=1

(
Am

x eiθm
x , Am

y eiθm
y , Am

z eiθm
z

)
eiνmt. (5)

We now focus on the X component
(

�Ec

)
x

:

(
�Ec(t)

)
x

=
M∑

m=1

Am
x eiθm

x eiνmt. (6)

Consider now that we observe N samples of this super-

posed wave, at time instances t0 · · · tN−1. Without loss of

generality we may assume these are evenly sampled with

tn = t0 + nδ, where 0≤n≤N − 1. We may rewrite eq. (6) in

terms of a discrete signal X[n] as

X[n] =
∑M

m=1 Am
x eiθm

x eiνm(nδ+t0)

=
∑M

m=1

(
Am

x eiθm
x eiνmt0

)
eiνmnδ. (7)

In order to estimate the DOA for individual waves, we

need to solve for their frequency, amplitude, as well as phase

components for all three dimensions.

3. DOA ESTIMATION ALGORITHM

We use the UMP, a variant of the Matrix Pencil method [12]

to solve for individual frequencies νm, while we solve a

set of overspecified linear equations using the Least Squares

Method to determine jointly the coefficients comprising phase

θm
x and amplitudes Am

x . We describe this in more detail in

the following sub-sections.

3.1. Estimating Frequency

The UMP may be used to solve equations of the type

X[n] =
M∑

m=1

Km (αm)n
(8)

for the complex parameters αm. It has been used to es-

timate DOA for phased antenna arrays, where the index n
represents different antenna sensors. In this paper we use the

method to solve for complex exponentials for time sampled

signals from the same tripole antenna, as is clear by com-

paring equation (7) and (8). We only provide an outline of

the UMP itself, more details can be obtained from [2]. The

first step involves constructing an (N −L)× (L + 1) Hankel

matrix whose columns are windowed versions of the original

data, i.e.

Y =

⎡
⎢⎢⎢⎣

X[0] X[1] · · · X[L]
X[1] X[2] · · · X[L + 1]

...
...

. . .
...

X[N − L − 1] X[N − L] · · · X[N − 1]

⎤
⎥⎥⎥⎦ .
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The parameter L is labeled a pencil parameter and is

selected for efficient noise filtering. The performance of

the UMP method is controlled by parameters M , N and

L. In order for the UMP to provide accurate estimates

for the frequency parameters, we need to have the rela-

tionship M≤L≤N − M . This also implies that to detect

M signals, we need to have at least 2M time samples. A

typically recommended value for the pencil parameter is

N/3 ≤ L ≤ N/2 [2]. The matrix Y may be shown to

be centro-hermitian and we can determine a unitary trans-

form matrix U that converts this into a purely real matrix,

XR = UHYU. A key advantage of this property is that XR

may then be used for all computations, reducing complexity

by a factor of 4. An SVD of XR is performed to compute

AS , which contains the M largest singular vectors of XR. We

then compute the M generalized eigenvalues γ1, · · · , γM of

the matrix
[
Re

(
UHJ1U

)
AS

]−1
Im

(
UHJ1U

)
AS . The

(N − L − 1) × (N − L) matrix J1 is defined as

J1 =

⎡
⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦

The frequencies νm may be directly computed from the

resulting eigenvalues as νm = 2tan−1 (γm) /δ.

3.2. Estimating Coefficients Comprising Phase and Am-
plitude

Once the dominant frequencies are determined, we may con-

struct a system of overspecified linear equations using (7) as:

⎡
⎢⎢⎢⎣

X[0]
X[1]

...

X[N − 1]

⎤
⎥⎥⎥⎦ = Γ

⎡
⎢⎢⎢⎢⎣

A1
xeiν1t0eiθ1

x

A2
xeiν2t0eiθ2

x

...

AM
x eiνM t0eiθM

x

⎤
⎥⎥⎥⎥⎦

(9)

with

Γ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1(
eiν1δ

) (
eiν2δ

)
. . .

(
eiνM δ

)

...
...

. . .
...(

eiν1δ
)N−1 (

eiν2δ
)N−1

. . .
(
eiνM δ

)N−1

⎤
⎥⎥⎥⎥⎥⎦

This system of linear equations may be solved using the Least

Squares Method and SVD to get the resulting coefficients

Am
x eiνmt0eiθm

x . While we cannot separate the phase from the

amplitude, the computation of the DOA does not require that

– as we can use this coefficient as is in the cross product.

3.3. Computing DOA or �V

Once we solve for the frequencies νm, and joint amplitude-

phase coefficients across all three dimensions, we have all the

parameters needed to specify each individual signal �Em3, and

then may compute �V m as in equation (3). For a staggered

array of magnetic and electric tripole antennas we can use

equation (2) for correct DOA under the assumption that the

magnetic and the electric tripole antenna detect the same lin-

ear wavefront.

4. EXPERIMENTAL EVALUATION

We have implemented this algorithm for DOA, and an as-

sociated wave generator, in C++ using the Basic Linear Al-

gebra Subprograms (BLAS) Library, the Gnu Statistical Li-

brary (GSL) and the Blitz package for object oriented scien-

tific computing. We evaluate the performance of the algo-

rithm under different settings with different values of M and

different levels of noise. Firstly, under no noise, we have ex-

perimentally verified that setting N≥2M + 2 and L ≈ N/2
we can perfectly disambiguate the DOA of each individual

wave – when the waves have different frequencies.

We then present results under the presence of Additive

White Gaussian Noise (AWGN) that is independent per di-

mension of the tripole antenna. In order to measure the accu-

racy of the DOA estimate, we compute the error in the result-

ing spherical coordinates, the Azimuth angle α and the Zenith

angle φ. For a vector �V = {Vx, Vy, Vz} these are defined as:

α = tan−1 (Vy/Vx) ,φ = cos−1
(
Vz/

√
V 2

x + V 2
y + V 2

z

)

Results were computed for three different cases, with M = 1,

M = 2, and M = 3, each with two levels of noise SNR,

15dB and 30dB. Each experiment consisted of generating M
circularly polarized waves with random frequency and phase,

and performing 500 trials to understand the impact of noise.

Quantitative results are computed by averaging across 10 ex-

periments. Results for one experiment each for M = 1,

M = 2, and M = 3 are presented in Figures 1 to Figure 3.

In the figures, results from one trial are represented as

small dots, with different colors representing the estimate for

a different component. Also shown are dark circles represent-

ing the true DOA angles for each component. Clearly, as the

level of noise decreases, the spread of the estimates decreases,

and they tend to cluster much closer to the true DOA. Inter-

estingly, we observe a greater spread with increasing M . This

is because we select the parameter N = 2M + 2, close to the

minimum valid choice. We believe that increasing N and the

pencil parameter L will lead to better estimates. We present

3We need to perform a matching step to make sure that the different co-

efficients across dimensions correspond to the same signal. This matching is

performed using the frequency νm, as it remains the same across the three

dimensions.
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Fig. 1. DOA estimation for M = 1 at 15dB (left) and 30 dB (right)
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Fig. 2. DOA estimation for M = 2 at 15dB (left) and 30 dB (right)

the average absolute error (averaged across the trials, experi-

ments and M ) in the estimates for the two angles in Table 1.

Table 1. Averaged Absolute Error in DOA
M = 1 M = 2 M = 3

α 15dB 0.05 (6%) 0.10 (11%) 0.28 (44%)

φ 15dB 0.04 (2%) 0.08 (3%) 0.27 (16%)

α 30dB 0.01 (< 1%) 0.02 (2%) 0.03 (5%)

φ 30dB 0.01 (< 1%) 0.01 (< 1%) 0.05 (3%)

We also include the percentage error, normalized by the value

of the true DOA. As can be seen, the resulting DOA estimates

are accurate, especially at 30 dB.

5. CONCLUSION

We present a method for DOA estimation of multiple simul-

taneously incident waves on a single tripole antenna sensor.

We use the Unitary Matrix Pencil Method combined with a

least squares solver to estimate the frequency as well as am-

plitude and phase coefficients from a sampled 3D time se-

ries. Experimental evaluation demonstrates the effectiveness

of the approach at accurately estimating the DOA for differ-

ent numbers of incident waves M as well as different noise

levels - with accuracies of within 1% for 30dB SNR. Direc-

tions for future research include improving the estimates at

low SNR, evaluation of the algorithms with better noise and

signal models, and validating the approach using a streaming

system connected to a true tripole sensor.

−1 0 1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Azimuth Angle

Ze
ni

th
 A

ng
le

Noise Level 15dB

−1 0 1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Azimuth Angle

Ze
ni

th
 A

ng
le

Noise Level 30dB

Fig. 3. DOA estimation for M = 3 at 15dB (left) and 30 dB (right)
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