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Abstract—The problem of Direction-of-Arrival (DOA) estima-
tion using an array of sensors has received much attention
for more than 3 decades. This is due to a rich interest from
application areas such as radar, sonar and wireless communi-
cation channel characterization. However, high resolution DOA
estimation requires an accurate model of the array response. This
is usually achieved by measuring the response using sources at
known positions (calibration). This paper considers interpolation
of the calibration measurements using knowledge of a nominal
response model. Standard linear interpolation is compared to an
approach based on Local Polynomial Approximation (LPA). We
also derive a weighted MUSIC estimator, which is applied using
error estimates from the interpolation. Both LPA interpolation
and weighted MUSIC are found to improve the performance, but
not uniformly in all scenarios.

Index Terms—Array signal processing, array calibration, doa
estimation.

I. INTRODUCTION

The general area of Sensor Array Signal Processing has re-

ceived a tremendous attention during the last several decades.

A large number of methods for Direction-of-Arrival (DOA)

estimation and beamforming have been presented in the lit-

erature, see e.g. [1], [2]. In this paper we are primarily con-

cerned with high-resolution DOA estimation using the MUSIC

algorithm [3]. It is well-known that accurate DOA estimation

requires a good mathematical model of the array response [4].

In practice, the array is usually subject to great uncertainty,

for example due to perturbations in sensor positions, channel

errors and mutual coupling. If a parameterized model of

the uncertainty is available, one can apply so-called auto-

calibration techniques. These estimate the array parameters

and the DOAs simultaneously, see e.g. [5]. In general, this

is an ill-conditioned problem, and further the model of the

uncertainty may itself be incorrect. A possible remedy is

to measure the response using sources at known positions.

However, this can only be done at a limited set of DOAs, and

the question arises of how to exploit these calibration data in

the best way. If a parametric model is available, one can of

course estimate the array parameters from the calibration data.

The case we consider herein is that a nominal model of the

array response is available, which is known to be subject to

errors. Following [6], [7], the nominal model is used to aid

the interpolation of the calibration data. In contrast to [7],

where a local regression is performed, we apply the more
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general method of Local Polynomial Approximation [8] for

the interpolation. In addition, we provide a new derivation of

a Weighted MUSIC (W-MUSIC) estimator, which is a special

case of the more general approach of [4]. The W-MUSIC

method takes the errors in the individual sensor models into

account, potentially leading to a reduced sensitivity to these

errors. Finally, it is shown how error estimates from the inter-

polation schemes can be used to determine the weights in W-

MUSIC. Simulation examples show that this can indeed lead

to improved performance when the errors are not uniformly

distributed over the different sensors. We also find that the LPA

can lead to a significantly reduced mean-square error, but for

more complicated functions the selection of the support in the

local model is a limiting factor that needs further attention.

II. PROBLEM FORMULATION

This section presents the mathematical framework for the

proposed methodology, as well as the underlying assumptions.

A. Direction-of-Arrival Estimation

Assume an array of m sensors receives a superposition

of d narrowband signals from distant sources. The complex

baseband representation of the array output is modeled by

x(t) =
d∑

k=1

a(θk)sk(t) + n(t) = A(θ)s(t) + n(t) , (1)

where x(t) is the m-vector of sensor outputs, sk(t) are the

signal waveforms, a(θ) is the array response to a signal from

the DOA θ, and n(t) represents additive noise. The array

output is sampled at N time instants, resulting in the data

x(t), t = 1, 2, . . . , N . Based on these data, the problem is to

estimate the DOAs θk, k = 1, . . . , d. The number of signals

d is assumed to be known. Since no structural assumptions

of the signal waveforms or the noise is done, the inference is

usually based on the array sample covariance matrix:

R̂ =
1
N

N∑
t=1

x(t)x∗(t) , (2)

where (·)∗ denotes complex conjugate transpose. The main

concern in this paper is modeling errors, and therefore the

infinite data case will be considered. We assume that s(t)
and n(t) are independent stationary random processes with
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bounded moments of sufficient order. The noise is assumed to

be zero-mean and spatially white, so that E[n(t)n∗(t)] = σ2I.
Under the stated assumptions, it holds that

lim
N→∞

R̂ = R = E[x(t)x∗(t)] = APA∗ + σ2I , (3)

where P = E[s(t)s∗(t)] is the signal covariance matrix. It is

further assumed that P is positive definite. This property is

necessary for the MUSIC algorithm, which exploits geometric

properties of the array covariance matrix R.

B. Array Models and Calibration

High-resolution DOA estimation requires that the functional

form of a(θ) is accurately known. This is often termed the

array manifold. For an ideal Uniform Linear Array (ULA),

the array manifold is given by

a(θ) = [1, ejκΔ sin θ, . . . , ej(m−1)κΔ sin θ]T , (4)

where κ = ω/c is the wavenumber, ω is the carrier frequency,

c is the speed of propagation, Δ is the inter-element separation,

and the DOA θ is defined relative the array broadside. In

practice, the array response can never be perfectly modeled by

(4) due to various imperfections. Firstly, all practical sensor

arrays are subject to mutual coupling, which affects the array

response in a way which is often difficult to predict accurately.

Secondly, there is always manufacturing tolerances, resulting

in sensor position errors, channel errors (gain and phase), etc.

This leads inevitably to that any explicit model for the array

manifold is subject to errors. It will be assumed here that

a nominal model a0(θ) is available, which is a reasonable

approximation of the true response a(θ). To improve on the

performance which is achieved using the nominal model, a

set of calibration data is collected, using sources at known

positions. This results in calibration vectors âl, l = 1, . . . , L,
that are (good) estimates of the true array response vectors

at the calibration DOAs θl, l = 1, . . . , L. More precisely

we assume that E[âl] = a(θl) (coherent calibration) and that

E[(âl − a(θl))(âl − a(θl))∗] = Ca and E[(âl − a(θl))(âl −
a(θl))T ] = 0, where Ca is known.

The DOA estimation problem using calibration data is now

formulated as follows: given data R̂ (R̂ = R in the infinite

data case), a nominal model a0(θ) and calibration vectors

{âl}L
l=1, estimate the DOAs θk, k = 1, . . . , d. It is of course

interesting to make the most efficient use of the calibration

data, so that the calibration grid {θl}L
l=1 can be kept as

sparse as possible. This is particularly important in the multi-

parameter case, where the calibration is done over a vector-

valued parameter θ, which can include azimuth, elevation,

frequency as well as polarization parameters.

III. INTERPOLATION AND LOCAL POLYNOMIAL

APPROXIMATION

Since we are given calibration data {âl}L
l=1, a very natural

idea is to interpolate these to obtain the array response at some

given direction θ. In general, this approach does not result in

satisfactory DOA estimates, since the dependency of a(θ) on

θ is not smooth. The remedy is to exploit the nominal model

a0(θ) in some way. The most direct approach is to apply a

correction to the nominal model, i.e.,

a(θ) = Qa0(θ) , (5)

where Q is the correction matrix. The correction can be global,
implying that the same Q is used for all θs, or it can be local,
which means that Q is a function of θ. Global calibration,
using either a diagonal or a full matrix Q is discussed e.g.

in [9]. This calibration is efficient for direction-independent

errors, such as channel errors and mutual coupling. However,

in the presence of θ-dependent errors, also Q needs to be a

function of θ. It is easy to see that it is enough to consider

a diagonal matrix Q = diag(q), where q = q(θ) depends on

the DOA. We call this local array interpolation, and this is

the case considered herein. Since q(θ) is potentially a much

smoother function of θ than is a(θ), it is natural to try a

simple interpolation scheme, such as linear interpolation. The

interpolation is usually applied to the m components of q(θ)
independently, and also treating the real and imaginary parts

separately. It is of course possible to interpolate gain and

phase instead, but this gives essentially the same results. In

linear interpolation, only the nearest neighbors are used to

calculated a sought value. This is optimal if the calibration

data are perfect, and the sought function is rapidly varying.

However, when the calibration measurements are noisy and

the true function qk(θ) is smooth, it is beneficial to exploit

several neighboring data points in the interpolation. In [7],

a local modeling approach is proposed, where the sought

value qk(θ) (real or imaginary part) is determined as a linear

combination of the calibration data {qk(θl)}L
l=1. The terms are

weighted according to their distance |θl − θ| to the DOA in

question. Here we propose a more general approach, based

on Local Polynomial Approximation [8]. The calibration data

are modeled as linear combinations of a set of basis functions

{φp(x)}P
p=0, usually taken as monomials φp(x) = xp. The

model is expressed as

qk(θl) =
P∑

p=0

αpφp(θ − θl) , (6)

where, with some abuse of notation, we assume let qk(·) rep-

resent either the real or the imaginary part. The coefficients αp

are determined by solving a Weighted Least-Squares (WLS)

problem:

α̂ = arg min
α

L∑
l=1

w(|θl − θ|)
[
q̂k(θl) −

P∑
p=0

αpφp(θ − θl)

]2

,

(7)

where the q̂k(θl) = âl,k/a0,k(θl) are computed from the

calibration data. Any weighting function can be used, but

in our examples we used a Gaussian window, w(x) =
(1/

√
2πh2)exp(−0.5x2/h2), where the "bandwidth" h con-

trols the amount of smoothing. If polynomial basis functions

are used, the first coefficient α̂0 = q̂k(θ) is the sought

interpolator of qk(θ). If desired, the second coefficient α̂1 gives

an estimate of the derivative q′k(θ).
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IV. A WEIGHTED MUSIC ESTIMATOR

Of the various suboptimal approaches to DOA estimation,

the MUSIC algorithm has gained much attention due to its

simplicity and elegance. It is based on geometric properties of

the array covariance matrix R = APA∗ + σ2I. Let

R =
m∑

k=1

λkeke∗k = EsΛsE∗
s + EnΛnE∗

n (8)

be the eigendecomposition of R, where the signal subspace

matrix Es = [e1, . . . , ed] contains the d principal eigenvectors.

Then λ1 ≥ · · · ≥ λd > λd+1 = · · · = λm = σ2, and E∗
nA =

0. This last relation is exploited by the MUSIC algorithm.

An alternative derivation of the method is to express it as an

Inverse Subspace Fitting (ISF) problem (see also [10]):

P (θ) = min
t

‖a(θ) − Est‖2, (9)

where t is a d × 1 vector and P (θ) is the inverse MUSIC

spectrum (or "null spectrum"), which is obtained as

P (θ) = a∗(θ)a(θ) − a∗(θ)EsEs
∗a(θ) = a∗(θ)EnE∗

na(θ) .
(10)

The MUSIC DOA estimates θ̂k are the arguments of the d
smallest minima of P (θ). The name inverse subspace fitting

stems from the relation to the subspace fitting formulation of

[11]. If ‖a(θ)‖ depends on θ, which is likely for perturbed

arrays, it is beneficial to normalize (10) by ‖a(θ)‖2.

Assume now that Es is known perfectly (infinite sample

case), whereas only an estimate â(θ) of the array manifold

is available. It is then natural to modify the ISF to include a

weighting:

Pw(θ) = min
t

(â(θ) − Est)∗W(â(θ) − Est) , (11)

where W = W∗ > 0 is the weighting matrix. From the general

theory of WLS estimators, the weighting matrix can be chosen

to minimize the estimation error variance of the resulting

DOA estimates. If E[(â(θ) − a(θ))(â(θ) − a(θ))∗] = Ca and

E[(â(θ) − a(θ))(â(θ) − a(θ))T ] = 0, then W = C−1
a results

in minimum variance estimates to first order in ‖Ca‖. It is
straightforward to extend the result to the case where circular

symmetry does not hold, but the details are omitted here.

Solving (11) w.r.t. t, the inverse weighted MUSIC spectrum

is expressed as

Pw(θ) = a∗(θ)Wa(θ) − a∗(θ)WEs(Es
∗WEs)

−1Es
∗Wa(θ) .

(12)

It is noted that the above can be interpreted as a special case

of the weighted MUSIC version proposed in [4], although our

derivation is much simpler and more direct.

V. SIMULATIONS

In this section we present some simulation results to com-

pare the performance of the different interpolation schemes.

It will also be shown how interpolation with error estimation

can be used together with the weighted MUSIC estimator.

In the simulations we consider the following scenario:

The nominal array is an m = 10 element ULA, with half

wavelength element separation. Two signals arrive from DOAs

θ1 and θ2, where θ2 is fixed at 13◦ relative array broadside,

whereas θ1 is varied from 8◦ to 12◦. The signal waveforms

are i.i.d., so the signal covariance matrix is proportional to

the identity. The estimates are formed from the exact array

covariance matrix R, thus the presence of noise is irrelevant.

The sensor positions are perturbed by i.i.d. Gaussian random

variables in two dimensions, each with zero mean and standard

deviation λ/20. In addition, each array response vector is pre-

multiplied by a random matrix G, which is either diagonal

(channel errors) or a full matrix (mutual coupling). To correct

for these errors, calibration data are collected on a uniform grid

within the interval θl ∈ {−40◦, 40◦}, where the calibration

grid is varied. Each calibration measurement âl is perturbed

by a N (0, 0.012I) random vector, i.e. Ca = 10−4I.
In each experiment we apply the MUSIC or Weighted

MUSIC algorithm, using different interpolation schemes. For

each DOA separation, 400 independent perturbed arrays are

generated and the corresponding R = APA∗ + σ2I are

calculated. Statistics for the different methods are then gener-

ated and compared. The following interpolation schemes are

compared:

• Linear interpolation of Re(q̂k(θ)) and Im(q̂k(θ)).
• LPA-based interpolation with P = 1 (locally linear

model). A Gaussian window is used, where the window

parameter h is optimized using Cross Validation (CV)

as follows: first, an estimation data set is formed from

calibration points {â1, â3, . . . , âL−1} (assuming L even),

and the remaining calibration vectors constitute the val-

idation set. The validation points are then interpolated

using the estimation data, and the MSE is computed.

The roles of the estimation data and the validation data

are then reversed, and the procedure is repeated. The h
that minimizes the average MSE is found using Matlab’s

fminbnd routine.

Since the errors are relatively large, the MUSIC method

(or any other DOA estimator) performs very poorly without

calibration, and it is therefore not included in the comparison.

The Weighted MUSIC estimator is implemented as follows:

The average (over θ) variance of the estimated Re(q̂k(θ))
and Im(q̂k(θ)) are first estimated using CV. Any correlation

between the real and imaginary parts, or between the differ-

ent q̂ks is ignored. The resulting covariance matrix of the

interpolated â(θ), thus assumed diagonal, is determined and

added to the error covariance Ca of the calibration vectors to

give the total covariance matrix of the estimated array model.

The inverse covariance is then used in the Weighted MUSIC

method

In the first example we use channel errors only, so G =
I + diag(g̃), where the elements of g̃ are N (0, 0.12). The
calibration grid is chosen as 5◦. The empirical RMS errors

for the source at θ = 13◦ are shown in Figure 1. It can be

seen that the LPA interpolation outperforms the standard linear

interpolator in this scenario, where only diagonal θ-dependent
errors are used. The weighting has an insignificant effect on
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Fig. 1. Empirical RMS errors for the MUSIC and W-MUSIC algorithms
using different interpolation schemes versus the DOA separation. Channel
and position errors only.
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Fig. 2. Empirical RMS errors for the MUSIC and W-MUSIC algorithms
using different interpolation schemes versus the DOA separation. Mutual
coupling and position errors.

the estimates in this case, due to the uniform nature of the

errors.

In the second experiment, all elements of G are perturbed,

which resembles the case of an incorrectly specified mutual

coupling model. Here, G = I + G̃, where the elements of

G̃ are zero-mean i.i.d. N (0, 0.12/m). Since this is a more

difficult case, the calibration grid is reduced to 2.5◦. The

different methods are applied as above, and the results for

the source at 13◦ are shown in Figure 2. In this case we

see that the simple linear interpolation scheme performs the

best, but its performance is still not improved by using W-

MUSIC. The superiority of linear interpolation is due to

the complicated nature of the errors, which means that the

qk(θ)s are generally rapidly varying. The truly optimal h in

the LPA approach is then very small, leading essentially to

linear interpolation. However, when h is determined from data,

and a fixed value is used for the whole field-of-view, larger

values are sometimes selected leading to worse interpolation

performance. Using weighted MUSIC reduces the influence

of these poor interpolations, and the resulting performance is

then close to that of the "optimal" linear interpolation.

VI. CONCLUSION

We have presented a new method for array calibration

based on Local Polynomial Approximation (LPA). The method

exploits knowledge of a nominal model as well as calibration

data using sources at known positions. The interpolation yields

a correction function for each sensor separately, which is then

used to update the nominal model. We have also presented

a simplified derivation of a Weighted MUSIC (W-MUSIC)

estimator, which can lead to improved performance when the

perturbations on the different sensors are imbalanced. It was

shown how the weighting can be determined from calibration

data. The different methods were tested on simulated data, and

both LPA and W-MUSIC showed a potential for improving the

DOA estimation performance. However, for LPA it is crucial

to determine the optimal bandwidth of the window used in

the local model. A simple scheme based on cross-validation

is proposed here, but it does not always lead to improved

performance compared to standard linear interpolation. In

our future work we plan to investigate alternative schemes

for bandwidth selection, including locally adapted (θ-varying)
methods. Another interesting option is to use a non-diagonal

correction matrix Q(θ), in order to achieve a smoother θ-
dependence.
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