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ABSTRACT

A new signal-selective direction finding algorithm which ex-

ploits the property of the cyclostationarity of incoming sig-

nals is proposed. After dimensionality reducing by projecting

the observed array data onto the signal subspace, the array

manifold matrix is identified by the simultaneous diagonal-

ization structure of the matrix pencil consisting of the cyclic

correlation matrix and the cyclic conjugate correlation ma-

trix. Then the direction-of-arrivals (DOAs) are obtained from

the phase-differences of the estimated array manifold matrix.

Simulation results demonstrate that the proposed algorithm is

superior to the cyclic-MUSIC and cyclic-ESPRIT in terms of

the root mean squares errors (RMSEs) of the DOA estimates.

Index Terms— Direction finding, signal-selectivity, cy-

clostationarity, simultaneous diagonalization, matrix pencil.

1. INTRODUCTION

Many communication signals exhibit cyclostationarity (or pe-

riodic correlation) due to modulation, sampling, multiplex-

ing, etc [1]. It has been shown that the signals can be au-

tomatically classified as the desired or undesired according

to their cyclostationarity properties, which is referred to as

signal-selectivity [2]. In array signal processing, such signal-

selectivity can be exploited to estimate only the direction-of-

arrival (DOA) of the signals of interest (SOIs) and suppress

the effect of interferences and noise.

Several high resolution signal-selective direction finding

methods have been developed [2][3][4]. Most of them are

based on subspace analysis. The cyclic-MUSIC algorithm

[2][3] uses the cyclic correlation matrix instead of the co-

variance matrix adopted by the conventional MUSIC method.

Based on the shift invariant property of the subspace spanned

by the cyclic correlation matrix, the cyclic-ESPRIT algorithm

is proposed [3]. However, both cyclic-MUSIC and cyclic-

ESPRIT use only one single cyclic correlation matrix. The
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extended cyclic MUSIC algorithm exploits both cyclic cor-

relation matrix and cyclic conjugate correlation matrix [5].

Thus the extended cyclic MUSIC outperforms cyclic-MUSIC

and cyclic-ESPRIT. However, the extended cyclic MUSIC

still needs one-dimensional spectral search.

In this paper, a new direction finding algorithm is pro-

posed. First the observed data are projected onto the signal

subspace to obtain the lower-dimensional data. Then we iden-

tify the array manifold matrix by solving a simultaneous di-

agonalization problem, which is solved via gradient descent.

Finally the estimations of the DOAs are obtained from the

phase-differences of the estimated steering vectors. Since the

proposed algorithm utilizes the information of both the cyclic

correlation and the cyclic conjugate correlation, it delivers

better performance than cyclic-MUSIC and cyclic-ESPRIT.

Compared with the extended cyclic MUSIC, the proposed ap-

proach can avoid any spectral search procedure.

2. SECOND-ORDER CYCLIC STATISTICS

The cyclic autocorrelation function and the cyclic conjugate

autocorrelation function of a signal x(t) are defined as [1][3]

Rα
xx(τ) =

〈
x(t)x∗(t − τ)e−j2παt

〉
t

(1)

and

Rα
xx∗(τ) =

〈
x(t)x(t − τ)e−j2παt

〉
t

(2)

respectively, where 〈·〉t denotes the infinite-time average, j =√−1 is the imaginary unit, and the superscript ∗ denotes the

complex conjugate. α is referred to as cycle frequency. x(t)
is said to be cyclostationary if Rα

xx(τ) or Rα
xx∗(τ) does not

vanish at cycle frequency α for some time lag parameter τ .

The cyclic cross-correlation function of two signals x1(t) and

x2(t) are defined as

Rα
x1x2

(τ) =
〈
x1(t)x∗

2(t − τ)e−j2παt
〉

t
. (3)

If Rα
x1x2

(τ) = 0 at some cycle frequency α for all time lag τ ,

then x1(t) and x2(t) are cyclically uncorrelated.

For a given a vector x(t) = [x1(t), · · · , xM (t)]T of cy-

clostationary signals, its cyclic correlation matrix and cyclic

conjugate correlation matrix are defined as

Rα
xx(τ) =

〈
x(t)xH(t − τ)e−j2παt

〉
t

(4)
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and

Rα
xx∗(τ) =

〈
x(t)xT (t − τ)e−j2παt

〉
t

(5)

respectively, where the superscript H denotes the conjugate

transpose and T the transpose. Note that both cyclic correla-

tion matrix and cyclic conjugate correlation matrix are gener-

ally not Hermitian.

In practice, since the length of the observed signal is finite,

the cyclic correlation matrices can be estimated by the finite-

time average operator.

3. ARRAY DATA MODEL

Consider K cyclically uncorrelated, narrowband sources emit-

ting plane waves impinging on a uniform linear array (ULA)

of M sensors with inter-sensor spacing d. It is assumed that

there are Kα (Kα ≤ K) sources are cyclostationary signals

with cycle frequency α, which are referred to as signals of in-

terest (SOIs). The DOAs of the SOIs are θk (k = 1, · · · ,Kα).
By arranging the M observed signals in a vector x(t) =

[x1(t), · · · , xM (t)]T , the matrix formulation of the array data

can be written as

x(t) = As(t) + i(t) + v(t) (6)

where the vector s(t) = [s1(t), · · · , sKα
(t)]T only contains

the cyclostationary sources with cycle frequency α, i(t) rep-

resents other K − Kα interfering sources, and v(t) denotes

additive noise. The array manifold matrix A is given by

A = [a(θ1), · · · ,a(θKα
)] (7)

where a(θk) is the steering vector

a(θk) =
[
1, ej2π d

λ sin θk , · · · , ej2π(M−1) d
λ sin θk

]T

(8)

with λ denoting the wavelength of the signal.

4. THE PROPOSED ALGORITHM

4.1. Eigen-Structure of The Cyclic Correlation Matrices

Note that the following properties hold true:

1) The cyclic correlation matrices of the interfering sources

i(t) and noise v(t) are zeros, i.e., Rα
ii(τ) = Rα

ii∗(τ) =
Rα

vv(τ) = Rα
vv∗(τ) = 0;

2) The cyclic cross-correlations between the SOIs and the

interfering sources (or noise) are zeros since they are

cyclically uncorrelated.

Based on the above properties, we get

Rα
xx(τ) = ARα

ss(τ)AH (9)

Rα
xx∗(τ) = ARα

ss∗(τ)AT (10)

where Rα
ss(τ) and Rα

ss∗(τ) are the cyclic correlation matrix

and the cyclic conjugate correlation matrix of s(t). Since

the sources are assumed cyclically uncorrelated, Rα
ss(τ) and

Rα
ss∗(τ) are both diagonal, i.e.,

Rα
ss(τ) = diag

{
Rα

s1s1
(τ), · · · , Rα

sKα sKα
(τ)

}
(11)

Rα
ss∗(τ) = diag

{
Rα

s1s∗
1
(τ), · · · , Rα

sKα s∗
Kα

(τ)
}

. (12)

Equations (9) and (10) mean that the two matrices Rα
xx(τ)

and Rα
xx∗(τ) span the same range space of A, i.e.,

range (Rα
xx(τ)) = range (Rα

xx∗(τ)) = range (A) . (13)

Therefore we can utilize both Rα
xx(τ) and Rα

xx∗(τ) to iden-

tify the range space of the array manifold matrix A and esti-

mate the DOA parameters. The cyclic MUSIC algorithm only

uses a single cyclic correlation matrix (Rα
xx(τ) or Rα

xx∗(τ)).
Compared with the single matrix-based cyclic-MUSIC and

cyclic-ESPRIT methods [1], exploiting two cyclic correlation

matrices can obviously improve the performance.

First, we form a new M × 2M matrix

Rα
E(τ) = [Rα

xx(τ),Rα
xx∗(τ)] . (14)

According to (13), Rα
E(τ) also spans the same range space of

A, i.e.,

range (Rα
E(τ)) = range (A) . (15)

The singular value decomposition (SVD) of Rα
E(τ) is given

by

Rα
E(τ) = [UsUn]

[
Σs

Σn

]
[VsVn]H (16)

where Σs = diag {σ1, · · · , σKα
} is a diagonal matrix con-

taining the Kα principal singular values in descending order

and Us ∈ C
M×Kα contains the corresponding orthonormal

left singular vectors. Un is the orthonormal complement of

Us (Un is also the left null space of Rα
E(τ)).

It is clear that A and Us span the same range space, i.e.,

range(A) = range(Us), which indicates that there exists a

Kα × Kα nonsingular matrix W satisfying

A = UsW. (17)

Since the estimation of signal subspace Ûs can be calculated

by the SVD of R̂α
E(τ), the estimation of array manifold ma-

trix Â can be obtained if we find the matrix W. In the fol-

lowing section, we will introduce a method for identifying

W. By exploiting UH
s Us = I, (17) can also be written as

UH
s A = W. (18)

4.2. Identification of W

The signal subspace spanned by the columns of Us is also

referred to as principal components. Project the observed data

onto the signal subspace, then a lower-dimensional vector

y(t) = UH
s x(t) ∈ C

Kα (19)
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is obtained. It is easy to verify that the cyclic correlation ma-

trix and the cyclic conjugate correlation matrix of y(t) can be

expressed as {
Rα

yy(τ) = UH
s Rα

xx(τ)Us

Rα
yy∗(τ) = UH

s Rα
xx∗(τ)U∗

s
(20)

Substituting (9) and (10) into (20) leads to{
Rα

yy(τ) = UH
s ARα

ss(τ)AHUs

Rα
yy∗(τ) = UH

s ARα
ss∗(τ)AT U∗

s
(21)

According to (18), (21) can be expressed as

Rα
yy(τ) = WRα

ss(τ)WH (22)

Rα
yy∗(τ) = WRα

ss∗(τ)WT . (23)

Equations (22) and (23) mean that the matrix pencil, denoted

as {Rα
yy(τ),Rα

yy∗(τ)}, has the simultaneous diagonalization

structure. However, there are two reasons causing that such

simultaneous diagonalization problem can not be solved by

the generalized eigenvalue decomposition (GEVD) of the ma-

trix pencil {Rα
yy(τ),Rα

yy∗(τ)}:

1) Rα
yy(τ) and Rα

yy∗(τ) are not Hermitian;

2) In (22) it is the conjugate transpose term WH , whereas

in (23) it appears the transpose term WT . Therefore it

is a bit different from the conventional joint diagonal-

ization problem.

Moreover, this problem has no closed-form solution. In

fact, the single equality (22) yields

Rα
yy(τ) + Rα

yy(τ)H = W (Rα
ss(τ) + Rα

ss(τ)∗)WH (24)

j
(
Rα

yy(τ) − Rα
yy(τ)H

)
= W (jRα

ss(τ) − jRα
ss(τ)∗)WH .

(25)

Clearly W is a joint diagonalizer of the Hermitian matrix

pencil
{
Rα

yy(τ) + Rα
yy(τ)H , j

(
Rα

yy(τ) − Rα
yy(τ)H

)}
, and

W can be obtained by the GEVD of the Hermitian matrix

pencil. Nevertheless, such W does not necessarily exactly
diagonalizes Rα

yy∗(τ) with the form of (23). Thus it can be

viewed as an approximate joint diagonalization problem and

an iterative algorithm can be designed to find W.

Denote the inverse of W with Z = W−1, then we can

find the joint diagonalizer Z by minimizing the cost function

J(Z) =
∥∥off

(
ZRα

yy(τ)ZH
)∥∥2

F
+

∥∥off
(
ZRα

yy∗(τ)ZT
)∥∥2

F

− log |det(Z)| (26)

where off(·) zeros the diagonal elements of a matrix, ‖·‖F is

the Frobenius norm, and det(·) denotes the determinant of a

squared matrix. Like the fast approximate joint diagonaliza-

tion (FAJD) algorithm [6], the first and the second terms of

the cost function is the squared off-diagonal error (denoted as

J1(Z)) and the minus logarithmic determinant term can avoid

the trivial solution and any singular solutions. This paper con-

siders the gradient-based algorithms minimizing (26).

First solve the optimal scaling problem. For a positive

scalar κ,

J(κZ) = κ4J1(Z) − Kα log κ − log |det(Z)| (27)

By solving
dJ(κZ)

dκ = 0, the optimal κ is given by

κopt = 4

√
Kα

4J1(Z)
. (28)

Furthermore, since
d2J(κZ)

d2κ = 12κ2J1(Z) + N
κ2 > 0 for any

κ, the κopt in (28) is the global optimum. Then update W as

W ← κW.

Secondly, update W along the gradient descent direction.

Denote

B1 = ZRα
yy(τ)ZH , B2 = ZRα

yy∗(τ)ZT . (29)

The conjugate-gradient of the cost function can be derived as

∇ZJ(Z) = off
(
BH

1

)
ZRα

yy(τ) + off (B1)ZRα
yy(τ)H

+ 2off (B2)Z∗Rα
yy∗(τ)∗ − 1

2
Z−H . (30)

Hence the learning rule for Z is

Z ← Z − μ∇ZJ(Z) (31)

where μ is the step size. After finding a joint diagonalizer Z of

the matrix pencil {Rα
yy(τ),Rα

yy∗(τ)} based on the gradient

descent iteration, we can get the estimate of the nonsingular

matrix Ŵ = Z−1.

4.3. DOA Estimation

Once we obtain W, the array manifold matrix can be esti-

mated using Â = ÛsŴ, i.e., the estimation of steering vec-

tors âk (k = 1, · · · ,Kα) are obtained.

It is easy to extract the DOA parameters from the esti-

mated steering vector âk. According to (8), the phase differ-

ence between the p-th element and the (p + 1)-th element of

âk equals

2π
d

λ
sin θ̂k = angle

(
âk(p)

âk(p + 1)

)
, p = 1, · · · ,M − 1

(32)

where âk(p) represents the p-th element of âk and angle(·)
is the phase angle of a complex number. Hence θk can be

estimated from (32). We can adopt the average of the multiple

estimation results as the final estimation for improving the

accuracy

θ̂k =
1

M − 1

M−1∑
p=1

sin−1

(
λ

2πd
angle

(
âk(p)

âk(p + 1)

))
(33)
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Fig. 1. RMSE of DOA estimates of the 1st SOI versus SNR.

5. SIMULATION RESULTS

We consider a ULA consisting of M = 4 sensors with inter-

sensor spacing d = λ/2. There are three BPSK-modulated

sources. Two signals are SOIs with bit rate 4 Mbps. The third

signal is considered as interferer, whose bit rate is 3.2 Mbps.
Hence the cycle frequencies of the SOIs and the interferer are

equal to 4 MHz and 3.2 MHz, respectively. In the simula-

tion experiment, we set the cycle frequency α = 4 MHz and

the lag parameter τ = 0.125 μs. Therefore the contribution

of the interferer signal is theoretically zero in the two cyclic

correlation matrices and the cyclic correlation based meth-

ods estimate only the DOAs of the SOIs and can suppress the

interferer. The observed signals are over-sampled with the

sample frequency 32 MHz during 100 μs (i.e., the number of

snapshots is equal to 3200).

The DOAs of the two SOIs are θ1 = −10◦, and θ2 = 10◦,

respectively. The azimuth of the interferer signal is θ3 = 30◦.

The noise is zero-mean and Gaussian white. It is assumed that

the three sources have the same power, so the signal-to-noise

ratio (SNR) is the same to each signal. The range of SNR is

considered to vary from 0 dB to 20 dB.

We compare our algorithm with the cyclic-MUSIC and

cyclic-ESPRIT methods. 500 Monte Carlo trials are carried

our to evaluate the performance of the three methods. Fig.

1 and 2 illustrate the root mean squared errors (RMSEs) of

the estimated DOAs of the first SOI and the second SOI ver-

sus SNR, respectively. It is clear that the proposed algorithm

outperforms the cyclic-MUSIC as well as the cyclic-ESPRIT.

6. CONCLUSION

A novel direction finding algorithm based on the second-order

cyclic statistics is designed. This method exploits the simul-
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Fig. 2. RMSE of DOA estimates of the 2nd SOI versus SNR.

taneous diagonalization structure of the matrix pencil con-

sisting of both cyclic correlation matrix and cyclic conjugate

correlation matrix. An interesting advantage of the proposed

algorithm is the capability of selecting the signals with a de-

sired cycle frequency. Numerical simulations are performed

to compare the proposed approach with the cyclic-MUSIC

and the cyclic-ESPRIT methods. Simulation results validate

that the new algorithm achieves biggish improvement in es-

timation accuracy. However, it requires long enough snap-

shots to ensure that the contributions of interferers and noise

in the cyclic statistics are sufficiently small, which constitutes

a drawback of the cyclic statistics based methods.
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