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ABSTRACT

This paper is devoted to the subspace DoA estimation using a large
antennas array when the number of available snapshots is of the same
order of magnitude than the number of sensors. In this context, the
traditional subspace methods fail because the empirical covariance
matrix of the observations is a poor estimate of the true covariance
matrix. Mestre et al. proposed recently to study the behaviour of
the traditional estimators when the number of antennas M and the
number of snapshots N converge to +∞ at the same rate. Using
large random matrix theory results, they showed that the traditional
subspace estimate is not consistent in the above asymptotic regime
and they proposed a new consistent subspace estimate which outper-
forms the standard subspace method for realistic values of M and
N . However, the work of Mestre et al. assumes that the source sig-
nals are independent and identically distributed in the time domain.
The goal of the present paper is to propose new consistent estima-
tors of the DoAs in the case where the source signals are modelled
as unknown deterministic signals. This, in practice, allows to use the
proposed approach whatever the statistical properties of the source
signals are.

Index Terms— DoA, Large Random Matrix Theory, MUSIC

1. INTRODUCTION

Subspace DoA estimation methods using antenna arrays (such
as MUSIC) have been extensively studied in the past because they
offer good complexity versus performance trade-off. Their statistical
performance have been mainly characterized in the case where the
number of snapshots N converge to +∞ while the number of an-
tennas M remains fixed. In practice, the corresponding conclusions
are valid in finite sample size if N is much greater than M . How-
ever, this assumption is often not realistic if the number of antennas
is ”large” because in practice, the number of available snapshots is
limited. In order to study the statistical performance of the subspace
estimates in this context, Mestre et al [4] proposed to consider the
asymptotic regime in whichM and N converge to +∞ at the same
rate, i.e.M, N → +∞, c = M

N
converges towards a strictly positive

constant. Using Large Random Matrix Theory (LRMT) results, [4]
proved that the traditional DoAs subspace estimators are asymptot-
ically biased, and proposed consistent estimators which outperform
the standard ones, for realistic values of M and N . The work [4]
however assumes that the various source signals may only be cor-
related in the spatial domain, so that in the time domain they are
assumed to be independent identically distributed (i.i.d.) sequences.
Hence, when the source signals are correlated in the time domain,

the various equations used to predict the behaviour of uncorrelated
random matrices are not valid. Therefore, the approach developed in
[4] do not provide a consistent estimator. The purpose of this paper
is to propose consistent subspace estimators when the source signals
are modelled as non observable deterministic sequences. In practice,
this context is relevant whatever the properties of the source signals
because realizations of any kind of stochastic processes can be seen
as deterministic sequences. The present approach is again based on
LRMT results, but in contrast with [4], the observation is modelled
as a noisy non zero mean random matrix, a model recently intro-
duced in [2] and referred to as the ”Information plus Noise model”.

This paper is structured as follows. In section 2, we present the
signal model and the addressed problem. In section 3, we provide
some background material on the asymptotic eigenvalue distribu-
tion of the empirical covariance matrix. In section 4, we evaluate the
asymptotic behaviour of the standard subspace estimate, and propose
a new consistent estimate. In section 5, numerical results illustrate
the performance of our new approach.

2. THE ADDRESSED PROBLEM

We assume that K narrow band deterministic source signals
(sk)k=1,...,K are received by an antenna array ofM elements,K <
M . We assume for simplicity that the array is linear with equispaced
antennas. The correspondingM dimensional observation signal yn

(at discrete time n) is supposed to be given by

yn = Asn + vn (1)

whereA = (a(θ1), . . . , a(θK)) is the matrix that contains the steer-
ing vectors of the K sources and where vn is an additive white
noise with covariance matrix E(vnvH

n ) = σ2IM . sn is defined
by sn = (s1,n, . . . , sK,n)T . We assume that yn is available from
n = 1 to n = N , and that M < N , or equivalently that c = M

N

is strictly less than 1. We note that it is possible to generalize our
results in case where c > 1 ; the presentation of the corresponding
results would however complicate the present paper. We denote by
Y = (y1, . . . ,yN ) the observed matrix which can be written as

Y = AS + V (2)

where S and V are defined as Y. We denote by Π the orthogonal
projection matrix on the ”noise subspace”, which in our context is
defined as the orthogonal complement of the column space of matrix
A. In the following, we assume that the empirical covariance matrix
of S defined by 1

N
SSH is full rank. Therefore, the noise subspace
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coincides with the kernel of the covariance matrixR defined as

R =
1

N
ASS

H
A

H (3)

We denote by (λk)k=1,...,M the eigenvalues of matrixR arranged in
increasing order and by (ek)k=1,...,M the corresponding unit norm
eigenvectors. We note in particular that λ1 = . . . = λM−K = 0
while the remaining eigenvalues are strictly positive and that
Π =

PM−K

k=1
eke

H
k . The subspace method is based on the ob-

servation that the angles (θk)k=1,...,K coincide with theK solutions
of the equation a(θ)HΠa(θ) = 0. In order to be able to use this
last observation, it is in practice necessary to estimate the function
a(θ)HΠa(θ) (called ”localization function”) for each θ ∈ [−π, π],
or more generically to estimate

η = b
H
Πb (4)

for each deterministicM -dimensional vector b. If N → +∞ while
M is fixed, the empirical covariance matrix of the observations R̂ of
Y defined by

R̂ =
1

N
YY

H (5)

converges towards the matrixR + σ2IM in the sense that

‖R̂ − (R + σ
2
I)‖s.p → 0 a.s (6)

where ‖‖s.p represents the spectral norm and a.s the almost sure con-
vergence. We denote by (λ̂k)k=1,...,M the eigenvalues of R̂ arranged
in increasing order and by (êk)k=1,...,M the corresponding eigen-
vectors. (6) implies that η̂trad − η → 0 a.s where η̂trad is the
traditional estimator of the localization function defined by

η̂trad =

M−KX
k=1

b
H
êkê

H
k b (7)

However, relation (6) does not hold in the asymptotic regime
M, N → +∞ in such a way that c = M

N
converges towards a non

zero constant. In particular, it is shown in section 4 that η̂trad − η
does not converge to 0.

3. THE ASYMPTOTIC EIGENVALUE DISTRIBUTION OF
MATRIX R̂

In this section, we review certain results related to the behaviour
of the eigenvalue distribution of matrix R̂ when M, N → +∞ in
such a way that c = M

N
converges towards a non zero constant.

The eigenvalue distribution of R̂ is characterized by its distribu-
tion function F̂ (λ) = 1

M
card{λ̂k : λ̂k ≤ λ, k = 1, . . . , M} where

card denotes the cardinality of a set. F̂ (λ) represents the proportion
of the eigenvalues of R̂ which are lower than or equal to λ and its
associated probability measure dF̂ (λ) is 1

M

PM

k=1
δ(λ − λ̂k).

We first review some results which follow immediately from [2]
and [3]. The distribution function F̂ (λ) is clearly random and under
additional technical assumptions, there exists a deterministic distri-
bution function F (λ) such that, F̂ (λ)−F (λ) → 0 a.s ∀ λ (see [2]).
The probability measure associated to F , denoted dF (λ), is called
the asymptotic eigenvalue distribution of the matrix R̂, and its char-
acterization allows to obtain useful informations on the behaviour
of the (λ̂k)k=1,...,M . The support of dF (λ) is a compact subset S

of R
+, dF (λ) is absolutely continuous, and its density is contin-

uous on S and differentiable on the interior S̊ of S. The measure
dF (λ) is characterized by its Stieltjes transform m(z) defined for
each z ∈ C − S by

m(z) =

Z
S

1

λ − z
dF (λ) (8)

We note thatm(z) is holomorphic on C−S . We denote by f(w) the
function defined by f(w) = 1

N
Trace(R−wI)−1, and we consider

the following equation w.r.t.m :
cm

1 + σ2cm
= f

`
z(1 + σ

2
cm)2 − σ

2(1 − c)(1 + σ
2
cm)

´
(9)

Consider the set C
+ = {z ∈ C : Im(z) > 0}. For each z ∈ C

+,
m(z) is the unique solution of equation (9) for which Im(m(z)) > 0
and Im(zm(z)) > 0. m(z) also satisfies (9) on z ∈ C − S , and
is real valued on R − S . Moreover, for each x ∈ S the limit
limy→0+ m(x + iy) exists, and is still denoted m(x) to sim-
plify the notations. Finally, m(x) satisfies the equation (9) on S̊,
Im(m(x)) > 0 on S̊, and the function x → 1

π
Im(m(x)) coincides

with the density of measure dF (x).
We now present a characterization of S which is more explicit

than the analysis provided in [3]. The proof is omitted due to the lack
of space.

Theorem 1 We recall that we are in the case where c < 1. Let φ(w)
be the function defined on R − {λ1, . . . , λM} by

φ(w) = w(1 − σ
2
f(w))2 + (1 − c)σ2(1 − σ

2
f(w)) (10)

The number of local maxima of φ satisfying

1 − σ
2
f(w) > 0 and φ(w) > 0 (11)

is an even number 2Q.
These local maxima are denoted by {w−q , w+

q }q=1,...,Q and they sat-
isfy

w
−
1 < 0 < w

+

1 ≤ w
−
2 < w

+

2 ≤ . . . ≤ w
−
Q < w

+

Q (12)

If we denote by x−q = φ(w−q ) and x+
q = φ(w+

q ) the values taken by
φ at the local maxima, then,

0 < x
−
1 < x

+

1 ≤ x
−
2 < x

+

2 ≤ . . . ≤ x
−
Q < x

+

Q (13)

Moreover, S is the reunion ofQ compact intervals called ”clusters”

S =

Q[
q=1

[x−q , x
+
q ] (14)

Finally, each eigenvalue of R belongs to one of the intervals
(w−q , w+

q ).

In order to have a better understanding of this result, we consider the
case where matrix R has a finite number m of distinct eigenvalues
denoted λ1, . . . , λm which remain fixed when M and N increase.
In other words, the eigenvalue distribution of matrix R converges
towards a Dirac measure concentrated at points (λj)j=1,...,m. We
note that λ1 = 0. If c is close to 0, matrix R̂ tends to be very close
to R + σ2I. Therefore, the asymptotic eigenvalue distribution dF
is itself close from a Dirac measure at points (λj + σ2)j=1,...,m.
For each q = 1, . . . , m, [x−q , x+

q ] and [w−q , w+
q ] are small width

intervals containing λq + σ2 and λq respectively. If c increases, the
width of the various intervals tend to increase, so that some of the
intervals may merge.

We now introduce a useful definition.
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Definition 1 We say that the eigenvalue λk (k = 1, . . . , M) of the
matrixR is associated with the cluster

ˆ
x−q , x+

q

˜
if λk ∈

ˆ
w−q , w+

q

˜
.

Moreover, we say that an eigenvalue λk is separated from another
eigenvalue λn if they are not associated with the same cluster.

The first cluster [x−1 , x+

1 ] plays a special role because we see from
Theorem 1 that it is associated with the eigenvalue 0 of matrix R.
Under a certain condition we omit, the eigenvalue 0 is the only one
to be associated with the first cluster (i.e 0 is separated from the other
eigenvalues ofR). We now state a conjecture which is necessary for
the validity of the next section’s results.

Conjecture 1 Assume that 0 is separated from the other eigenvalues
of R for each large M, N . Consider an interval (a, b) containing
[x−1 , x+

1 ] and for which b < x−2 . Then, if M, N are large enough,
almost surely, the firstM −K eigenvalues of R̂ belong to (a, b) and
the other ones do not belong to (a, b).

A quite similar result was established in [1] in the context of zero
mean large random matrices. In our context, it has not yet been es-
tablished formally. However, numerical simulations clearly indicate
that this conjecture is correct. See e.g. the discussion [3]. From now
on, we assume that the following statement is verified.

Assumption 1 The eigenvalue 0 is separated from the other eigen-
values and Conjecture 1 is correct.

We now state a technical, but very important lemma.

Lemma 1 Let w(z) be the function defined on C by

w(z) = z(1 + σ
2
cm(z))2 − σ

2(1 − c)(1 + σ
2
cm(z)) (15)

Then, w(z) is holomorphic on C − S , and Im(w(z)) �= 0 if z ∈
C − R. Moreover, w(x) is real if x ∈ R − S .
If we denote by C the set defined by

C = {w(x) : x ∈ [x−1 , x
+

1 ]} ∪ {w(x)∗ : x ∈ [x−1 , x
+

1 ]} (16)

then C is a closed contour enclosing 0 but no other eigenvalue of
matrixR. Finally, the winding number of C around 0 is equal to 1.

We finish this section by a useful convergence result.

Proposition 1 As M, N → ∞ at the same rate, 1

M
Trace(R̂ −

zI)−1 converges a.s for z ∈ C − S towards m(z). Moreover, the
entries of matrix (R̂ − zI)−1 converge a.s for z ∈ C − S towards
the entries of the matrix T(z) defined by

T(z) = (1 + σ
2
cm(z)) [R − w(z)I]−1 (17)

Remark: In order to connect Proposition 1 with the results used in
[4], we recall the asymptotic behaviour of the entries of (R̂− zI)−1

in the case where the source signal is temporally uncorrelated. Let
miid(z) be the solution to the equation

miid(z) =
1

M
Tr Tiid(z)

Tiid(z) =
h“

AA
† + σ

2
I
”

(1 − c − czmiid(z)) − zI
i−1

Then the entries of (R̂− zI)−1 have the same asymptotic behaviour
that the entries of Tiid(z). One can verify that the entries of T(z),
which depend on S, converge to the entries of Tiid(z). Therefore,
in this context, our estimator is essentially equivalent to the proposal
of [4]. However, if S is not temporally iid, then the entries of (R̂ −
zI)−1 do not have the same asymptotic behaviour that the entries of
Tiid(z). In this context, the various equations that allow to derive
the estimator of [4] differ from what we propose in the present paper
and do not lead in principle to a consistent estimator.

4. DERIVATION OF A CONSISTENT SUBSPACE
ESTIMATE

We first give a description of the asymptotic behaviour of the
conventional MUSIC estimate η̂trad of η defined by (7). One can
show that when M, N → +∞, c = M

N
→ 0, η̂trad consistently

estimates η. However, ifM, N → +∞, c = M
N
converges towards

a non zero constant, η̂trad becomes inconsistent. We now present our
new consistent estimator of η.

Theorem 2 As M, N → ∞ at the same rate, η = bHΠb is con-
sistently estimated by η̂new defined by

η̂new =
MX

k=1

β̂k b
H
êkê

H
k b (18)

where (β̂k)k=1,...,M−K are defined by

β̂k = 1 +
σ2

N

MX
l=M−K+1

1

λ̂l − λ̂k

+
2σ2

N

MX
l=M−K+1

λ̂k

(λ̂k − λ̂l)2

− σ
2(1 − c)

 
MX

l=M−K+1

1

λ̂l − λ̂k

−

MX
l=M−K+1

1

μ̂l − λ̂k

!

(19)

and where (β̂k)k=M−K+1,...,M are defined by

β̂k =
σ2

N

M−KX
l=1

1

λ̂k − λ̂l

−
2σ2

N

M−KX
l=1

λ̂k

(λ̂k − λ̂l)2

+ σ
2(1 − c)

 
M−KX

l=1

1

λ̂k − μ̂l

−

M−KX
l=1

1

λ̂k − λ̂l

!
(20)

The (μ̂l)l=1,...,M are the solutions (arranged in increasing order) of

the equation 1 + σ2

N
Trace

“
R̂ − xI

”−1

= 0.

Sketch of the proof : The starting point is based on Lemma 1 which
allows to express η = bHΠb with the Cauchy Integral Formula as

η =
1

2iπ

Z
C−

b
H(R − λI)−1

bdλ (21)

where the notation C− means that the contour C defined by (16) is
negatively oriented. Using the parametrization defined in (16), we
immediately get that

η =
1

π
Im

"Z x
+

1

x
−

1

b
H(R − w(x)I)−1

bw
′(x)dx

#
(22)

where w′(x) represents the derivative of w(x). As w(x) is real if
x ∈ R − S , (22) is equal to

η =
1

π
Im

»Z b

a

b
H(R − w(x)I)−1

bw
′(x)dx

–
(23)

where a < x−1 < x+

1 < b < x−2 . We notice that Im(w(z)) �= 0 if
z ∈ C − R, and that the integrand on the right hand side of (22) is
holomorphic on C − R. Therefore, (23) can be written as

η =
1

2iπ

Z
∂R
−

y

b
H(R − w(z)I)−1

bw
′(z)dz (24)
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where ∂R−y represents the negatively oriented boundary of the rect-
angle Ry = {u + iv : u ∈ [a, b], v ∈ [−y, y]}. Proposition 1 im-
plies that η is also given by

η =
1

2iπ

Z
∂R
−

y

bHT(z)b

1 + σ2cm(z)
w
′(z)dz (25)

The integrand on the right hand side of (25) can be consistently
estimated using the results in Proposition 1. Indeed, Proposition 1
implies that m(z) and bHT(z)b can be consistently estimated by
1

M
Trace(R̂ − zI)−1 and bH(R̂ − zI)−1b respectively for each

z ∈ ∂R−y . In order to estimate w′(z), we evaluate w′(z) in terms
of m(z) and m′(z), and replace these two functions by their corre-
sponding consistent estimates. Hence, the final consistent estimate
η̂new is obtained by replacing the integrand in (25) by its consistent
estimate, denoted by ĝ(z). In other words,

η̂new =
1

2iπ

Z
∂R
−

y

ĝ(z) dz (26)

where ĝ(z) is a rational function of z. Therefore, the integral can
be evaluated using the residue theorem. The poles of ĝ(z) are the
eigenvalues (λ̂k)k=1,...,M as well as the zeros of 1+cσ2

M
Trace(R̂−

zI)−1. Conjecture 1 implies that if M and N are large enough, the
first M − K eigenvalues (λ̂k)k=1,...,M−K belong to the rectangle
Ry while the last ones (λ̂k)k=M−K+1,...,M are located outsideRy .
Moreover, it can be shown that the (μ̂k)k=1,...,M−K belong to the
rectangleRy while the (μ̂k)k=M−K+1,...,M are located outsideRy .
These remarks allow to establish that η̂new is given by (18).

5. NUMERICAL RESULTS

We compare the results provided by the traditional subspace es-
timate, the new estimate (18) (referred to in the figure as ”General
Case”), and the improved estimate of [4] derived under the assump-
tion that the source signals are i.i.d. sequences (referred to as ”Un-
conditional Case”).

We consider two closely spaced sources with equal power im-
pinging on a uniform linear array from DoAs of 16˚ and 18˚w.r.t the
broadside of the antenna array. The emitted symbols come from a
16-QAM constellation and are filtered by a raised-cosine with a roll-
of of 0.5. The oversampling rate of the two sources are respectively
2 and 4. The number of antennas isM = 20 and the number of snap-
shots is N = 40. The distance between two consecutive antennas is
half a wavelength. The estimates are obtained by evaluating the three
localization functions for b = a(θ) for different values of θ. In each
case, the two estimated angles are defined as the two deepest local
minima of the estimated localization function.

We compare in Figure 1 the outlier probability of the three ap-
proaches versus the SNR. An outlier is declared when one of the two
estimated angles is separated from the true one by more than half of
the separation between the two true sources. To achieve a probabil-
ity of 0.5, we notice that we have a gain of 10 dB by using the new
estimator instead of the traditional one.

In Figure 2, we plot the square root of the relative mean square
error (referred to as ”Relative Standard Deviation”) of the estimates
w.r.t. the SNR, and the Cramer-Rao Bound (CRB) for correlated
sources. Concerning the achievement of the CRB, this figure shows
an improvement of 4 dB.

Moreover, for the parameters chosen in the simulations, the
eigenvalue 0 separation condition is verified near 8 dB, and we

clearly see in the two figures that the performances begin to improve
near this SNR value. However, it is quite surprising (in regards to
the remark at the end of Section 3) that the improved estimator in
the unconditional case have the same performance than the new
one, even with time-correlated sources. The link between these two
estimators could be an interesting topic.
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