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ABSTRACT

A wide-band near-field source localization method is pre-

sented in this paper. Based on a pre-estimated source loca-

tion, we form a focusing matrix which is able to compensate

the wavefront distortion (with respect to far-field wavefront)

due to near-field propagation and frequency dependent phase

shift simultaneously. The focused covariance matrix has been

proved to have a partially far-field narrow band structure,

which allows us to estimate the bearings of the sources by

the well studied far-field DOA estimators. The range estima-

tion is then carried out via peak searching of the 1D MUSIC

spectral with the estimated bearings. The performance of the

algorithm is tested by simulations.

Index Terms— Array signal processing, Direction of ar-

rival estimation, Position measurement, Focusing

1. INTRODUCTION

The topic of source localization with an array of sensors has

received a lot of attention because of its wide applications

in military and civil services. Many methods have been pro-

posed to solve this problem such as the MUSIC algorithm and

its derivatives in [3, 4]. Most of these approaches make the as-

sumption that the sources are located far from the array so that

each signal wavefront can be characterized by a single DOA,

however, when a source is located close to the array (i.e., in

near-field), the wavefront must be characterized by both the

azimuth and range. Far-field assumption-based approaches

are no longer applicable to this situation. The near-field sit-

uation can occur, e.g., in sonar, electronic surveillance, and

seismic exploration.

The estimation of near-field sources parameters has

been discussed recently, e.g. the multi-dimensional MUSIC

method proposed in [3] and the higher order ESPRIT algo-

rithm addressed in [5]. Several methods have been presented

in [1, 6] to avoid the high-cost multi-dimensional search and

higher order statistics computation. The principle of these

algorithms [1, 6] is to separate the estimation of DOA and

range by using appropriate approximations. Based on this

idea, a narrow-band focusing-based estimator has been pro-

posed in [2], where the near-field wavefront distortion (with

respect to far-field wavefront) is compensated via focusing in

order to enable the application of far-field DOA algorithms

for near-field bearing estimation.

In this paper we propose a new estimator for the localiza-

tion of wide-band near-field sources. Based on the focusing

technique proposed in [2], the wide-band near-field focusing

matrix is able to compensate the wavefront distortion due to

near-field propagation and the phase change caused by fre-

quency shift within one time focusing calculation. The snap-

shots sampled in different frequencies are coherently summed

and focused on a pre-estimated point. The focused covariance

matrix is proved to have a partially far-field structure, which

allows us to employ ESPRIT method for the bearing estima-

tion. With the estimated source angles, the ranges of sources

are estimated from 1D search-based MUSIC. The rest of the

paper is organized as follows: section 2 addresses the received

signal model; the focusing procedures are presented in sec-

tion 3; in section 4, we discuss the estimation of bearings and

ranges; the simulation results are shown in section 5 and sec-

tion 6 concludes the whole paper.

2. SIGNAL MODEL

Consider a near-field scenario of K uncorrelated high fre-

quency wide-band signals impinging to a M -element ULA

with inter-element spacing d. Let the first element of the array

be the phase reference point and the origin of the coordinates

system. We assume that the array elements are on the axis

θ = 0. The received signal in time domain at the mth sensor

can be modeled as

xm (t) =
K∑

k=1

ejτmksk (t) + nm (t) (1)

where sk (t) is the kth source signal, nm (t) is the additive

white Gaussian noise and τmk is the phase shift associated

with propagation time delay between first sensor and mth sen-

sor of the kth source signal, which is a function of source

2129978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



signal parameters, range rk, angle θk and frequency f , given

by

τmk = 2πf
c

(ymk − rk) (2)

with

ymk =

√
r2
k + (m− 1)

2
d2 − 2rk (m− 1) d cos θk (3)

being the distance between mth sensor and kth source. The

received signal of the m-th sensor in frequency domain is the

FFT of the time domain signal xm (t), which can be written

as

Xm (f) = � (xm (t)) =
K∑

k=1

ejτmk(f)Sk (f) + Nm (f) (4)

where Sk (f) and Nm (f) are the FFT of the source signal

and noise respectively.

The received signal of the array in frequency domain

X (f) = [X1 (f) , . . . XM (f)]
T

(5)

with the superscript T denoting matrix transpose, can be mod-

eled as

X (f) = A (f)S (f) + N (f) (6)

where S (f) = [S1 (f) , . . . SK (f)]
T

is the source signal vec-

tor in frequency domain, N (f) = [N1 (f) , . . . NM (f)]
T

is

the noise vector, A (f) = [a (r1, θ1, f) , . . . ,a (rK , θK , f)] is

the array manifold matrix in frequency f with its kth column

a (rk, θk, f) being expressed as

a (rk, θk, f) =
[
ejτ1k(f), . . . , ejτMk(f)

]T

. (7)

The phase shift τmk can be expressed below by using Taylor

expansion:

τmk (f) =

(
−

2πfd

c
cos θk

)
(m− 1)+g (rk, θk, f, m) (8)

where g (rk, θk, f, m) contains the second and higher orders

of the Taylor expansion, which is a function of the source

location (rk, θk), the frequency f and the sensor index m.

With the expression (8), we can rewrite the array manifold

matrix with its kth column a (rk, θk, f) being

a (rk, θk, f) =

⎡
⎢⎣

1
...

ej(− 2πfd
c

cos θk)(M−1)+jg(rk,θk,f,M)

⎤
⎥⎦
(9)

The observed covariance matrix of received signal in fre-

quency f can then be written as

RX (f) = E
[
X (f)XH (f)

]
= A (f)Rs (f)A (f)

H
+σ2I

(10)

where the superscript H denotes matrix transpose conjugate,

σ2 is the power of noise, and Rs (f) = E
[
S (f)SH (f)

]
is

the signal covariance matrix.

3. FOCUSING

The focusing-based estimator has been proposed in [2] for

the position estimation of narrow-band sources, in which

a focusing matrix is employed to compensate the distorted

wavefront due to the near-field propagation. For high fre-

quency wide-band sources formulated in the previous sec-

tion, we propose here a frequency-dependent focusing matrix

B (f) ∈ CM×M . This new focusing matrix is able to com-

pensate both the near-field wavefront distortion and the phase

shift caused by the frequency shift within one time focusing

calculation. B (f) can be written as below:

B (f) = diag
(
1, . . . , ej(− 2πf0d

c
cos θe)(M−1)−jτMe(f)

)
(11)

where f0 is the known reference frequency, τme (f) is ob-

tained from (2) and (3) with (re, θe) being a pre-estimated

source location from the beamforming-based pre-estimator.

Since (re, θe) is obtained from a low-resolution pre-

estimation, we can assume that L sources (L ≤ K) are

located in the area around (re, θe) with their positions being

(rl, θl) for l = 1, 2, . . . , L.

Applying focusing technique on the array steering vector

a (rl, θl, f) of the l-th source yields

cl = B (f)a (rl, θl, f) =

⎡
⎢⎣

1
...

ej(− 2πf0d

c
cos θl)(M−1)

⎤
⎥⎦ ,

(12)

where the approximations below are used

τml (f)− τme (f) ≈ τml (f0)− τme (f0)

≈
(
− 2πf0d

c
(cos θl − cos θe)

)
(m− 1)

(13)

We note that the first step of (13) is based on the assumption

in classical focusing technique for wide-band signal. In the

second step, we assume g (re, θe, f0, m) ≈ g (rl, θl, f0, m)
because the function g consists of the second and higher or-

ders of the Taylor expansion of the phase shift function τ .

From (12), we find that cl is independent of f and has a

form similar to the directional vector in case of far-field nar-

row band sources. With this property, we can apply focusing

technique to the covariance matrix observed in frequency f
as follows
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Rf (f) = B (f)Rx (f)BH (f)

= C (f)Rs (f)CH (f) + σ2I (14)

with C (f) being expressed as

C (f) = B (f)A (f) = [B (f)a (r1, θ1, f) . . . , cl . . .]
(15)

To facilitate our presentation, we assume [c1, . . . , cL] to be

the first L columns of C (f), i.e. C (f) = [G,D (f)] with

G = [c1, . . . , cL] and D (f) ∈ CM×(K−L) denoting the rest

(K − L) columns of C (f). We note that G is independent

of the frequency f , so G is a part of C (f) for any f . The av-

eraging summation of Rf (f) in different frequencies yields

Ry =
1

J

J∑
i=1

Rf (fj) =
1

J

J∑
j=1

C (fj)Rs (fj)C
H (fj)+σ2I

(16)

where J denotes the number of frequencies. With the prop-

erty that G is a part of C (f) for any f , we can rewrite (16)

as

Ry = CfR
′

sC
H
f + σ2I (17)

where Cf = [G,Df ], Df ∈ CM×(K−L) and R′s ∈ CK×K

are full rank matrices which depend on Rs (fj) and C (fj)
with j = 1, . . . , J . Obviously, Cf has a partially far-field

narrow-band structure, which enables us to apply the far-field

DOA algorithm in the next section.

In general, we suppose that we obtain Q (Q ≤ K) es-

timated source locations from the beamforming-based pre-

estimator. We can divide the interesting area into Q subareas.

Focusing technique is then applied to each subarea separately

with the Q estimates. Far-field narrow band DOA estimators

are consequently applicable to estimate the sources in the q-th

subarea when it is focused.

4. SOURCE LOCALIZATION

4.1. DOA Estimation

The eigen-decomposition of Ry yields

Ry = UsΛsU
H
s + UnΛnUH

n (18)

where Us ∈ CM×K contains K eigenvectors spanning the

signal subspace of Ry , and the diagonal matrix Λs ∈ CK×K

contains the corresponding eigenvalues. Similarly, Un ∈
CM×(M−K) contains M −K eigenvectors in the noise sub-

space of Ry , and the diagonal matrix Λn ∈ C(M−K)×(M−K)

contains the corresponding eigenvalues.

Then we decompose the array into two sub-arrays, so we

have the two subarray manifold matrices C1 and C2 be ex-

pressing as

Cf =

[
C1

last row

]
=

[
first row

C2

]
(19)

With the property of Cf obtained in the last section, we find

that C1 and C2 satisfy C1 = C2Σ with Σ ∈ CK×K being

written as

Σ =

[
Φ 0

0 Ξ

]
(20)

where Φ is a L× L diagonal matrix given by

Φ = diag
[
ej

2πf0d

c
cos θ1 , . . . , ej

2πf0d

c
cos θL

]
(21)

and Ξ ∈ C(K−L)×(K−L) is a full rank matrix. Similarly, the

signal subspace Us can be partitioned as

Us =

[
Us1

last row

]
=

[
first row

Us2

]
(22)

From the signal model in (6) and the matrix eigen decompo-

sition in (18), it is obvious that there exists a K×K full-rank

matrix V satisfying Us = CfV. Thus, we have Us1V = C1

and Us2V = C2. With the relation between C1 and C2 pre-

sented previously, we can write the following equation

Us1 = Us2VΣV−1 (23)

where V−1 denotes the inverse matrix of V.

By multiply the pseudo-inverse matrix of Us2 on the two

sides of (23), we have

Ψ =
(
UH

s2Us2

)−1
UH

s2Us1 = VΣV−1 (24)

We note that Ψ and Σ have the same eigenvalues. In addition,

from (20), we know thatthe diagonal elements of Φ are L
eigenvalues of Σ.

We can then estimate the DOAs of the L sources around

the pre-estimated location (req, θeq) by

θ̂l = β |β∈p(req,θeq) (25)

where p (req, θeq) denotes the subarea around (req, θeq) and

β = arcsin

(
λ

2πd
arg (eigenvalues of Ψ)

)
. (26)

4.2. Range Estimation

By substituting the estimated angle back into the steering vec-

tors, the problem is reduced to finding the parameter r in

a
(
r, θ̂k, f0

)
with the received signal. We employ here 1-

D MUSIC method for the range estimation. The orthogonal

projector Mn is obtained by

Mn = BH (f0)UnUH
n B (f0) (27)
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Fig. 1. STD of bearing and CRB versus SNR

And the range estimates is obtained by maximizing the MU-

SIC spectrum

r̂l = arg max
r∈req

[
P

(l)
MUSIC (r)

]
(28)

where req is the region around req and the MUSIC spectrum

is obtained by,

P
(l)
MUSIC (r) =

1

aH

(
r, θ̂l, f0

)
Mna

(
r, θ̂l, f0

) (29)

In addition, we execute the 1-D MUSIC search for each

estimated DOA to avoid parameter pairing problem.

5. SIMULATION RESULTS

To test the performance of the proposed, we simulate a sim-

ple case: a ULA with M = 9 and d = c/5f0 is employed to

localize two uncorrelated wide-band sources with their loca-

tions (r1, θ1) = (4.2λ, 55◦)and (r2, θ2) = (4.5λ, 65◦). 11
frequencies varied from 1.9GHz to 2GHz are used with fo-

cusing frequency f0 = 2GHz. 200 independent Monte Carlo

trials have been carried out at different SNRs (from -10dB

to 20dB) with 1000 snapshots. The classical beamforming

method has been chosen for the pre-estimation.

The results from the proposed method are compared with

the narrow band focusing-based algorithm presented in [2]

and the corresponding Crammer Rao Bounds (CRBs) given

in [1]. Figs. 1 and 2 illustrate the standard deviation of the

estimates and the corresponding CRBs. versus SNR, respec-

tively. From these 2 figures, we can see that the wide-band

estimator (WBE) has a better efficiency than the narrow-band

estimator (NBE). This is because the WBE uses coherently

the snapshots obtained in different frequencies, which brings

a better estimate of the covariance matrix. The CRB of WBE

is lower than that of NBE thanks to the same reason.
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Fig. 2. STD of Range and CRB versus SNR

6. CONCLUSION

We present a new estimator for the localization of near-field

wide-band sources. The focusing procedure embedded in

this estimator can compensate the wavefront distortion due

to near-field propagation and the phase change caused by

frequency shift within one time focusing calculation, which

enables the application of far-field narrow-band algorithms

to estimate the bearings. It addition this estimator has a

high efficiency compared to the narrow-band focusing-based

estimator.
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