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ABSTRACT
Two novel algorithms are proposed for ranges, frequencies and
direction-of-arrivals (DOAs) estimation of the narrow-band near
field sources. By exploiting the time-domain and space-domain
correlations of impinging signals jointly, we can identify 2p
independent sources and estimate 3 groups of parameters with a
uniformly linear array (ULA) of 2p + 1 elements, being double
of the conventional methods. In addition, the peak search and
pairing operations, needed in most algorithms for near field
sources, can be omitted completely in our methods. Simulation
results show that our two ESPRIT-based methods provide the
improved performance over conventional ones based on the
second-order statistics.

Index Terms — Array signal processing, Direction of
arrival estimation, Frequency estimation, Parameter estimation

1. INTRODUCTION
Lots of researches on array processing were focused on the
far-field signals. Nevertheless, the far-field assumption does not
holds in many scenarios. In these cases, the steering vectors are
characterized by not only the impinging DOAs, but the ranges
of the sources as well. Then, the accurate depiction of the
space signature of the signals allows for the joint estimation.
In the conventional near-field signal processing, the number

of identifiable sources is much fewer than that in far-field
scenarios. For example, a ULA with 2p + 1 elements can
identify 2p sources in far-field scenarios, but only p sources
in the near-field ones for most proposed algorithms [1-2]. The
number of identifiable sources of the near-field signals is only
the half of the far-field signals. The algorithms in [3-4] can
estimate more sources, but they have some constraints on the
sources’ frequencies.
In addition, the parameters in the near-field scenarios in-

clude range, frequency and DOA (Direction-Of-Arrival), where
two problems exist: the peak search and parameter pairing op-
erations. Some algorithms based on the MUSIC method need
the time-consuming peak search. Although algorithms based on
the ESPRIT method or matrix-pencil theory can estimate the
parameters without the search operation, they usually need the
parameter pairing operation too.
In this paper, two novel DOA, frequency and range estima-

tion algorithms are proposed for narrow-band near-field signals,

* Partially supported by the National Natural Science Foundation of
China(No. 60502022,60572046,60772095), the National Natural Science
Foundation of Shaanxi(No. 2005F25) and the National Hi-Tech Research
and Development Program of China(No. 2006AA01Z220).

which exploit both the space-domain and time-domain corre-
lations. As a result, they can identify 2p or 2p − 1 sources
with a ULA of 2p + 1 elements, being double of the most con-
ventional ones using the second order statistics. In addition,
one of our algorithms does not need the peak search and pair
operations any more. Besides them, its computational burden
is comparable with those based on the second-order statistics
ones, for it only needs the same number of snapshots as the
other second-order statistics ones. Simulation results show that
both algorithms provide better performance than conventional
ones.

2. SYSTEM MODEL
Consider a ULA having L = 2p+1 elements with interelement
spacing d, which is shown in Fig. 1, where the array center is
designated as the phrase reference point and the origin of the
coordinate system. Then, the signal received by the l-th sensor
is expressed as

xl(t) =
M∑

m=1

sm(t)ejτlm + nl(t) − p ≤ l ≤ p (1)

where sm(t) denotes the m-th impinging signal, nl(t) is the
additive white Gaussian noise (AWGN), and τlm is the delay of
the m-th impinging signal propagation time difference between
sensor "0" and sensor l given by [1-2]

τlm =
2πrm

λ
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where rm and θm are the range and DOA of source m,
respectively, and λ denotes the signal wavelength. Obviously,
τlm is not a linear function of rm and θm any more, and
the DOA estimation methods in far-field scenarios are not
adequate for this context. To work out this problem, a good
approximation of τlm, proposed by Fresnel, which exploits its
second Tylor expansion, is expressed as

τlm = ωml + φml2 + O(
d2

r2
m

) (3)

where O( d2

r2
m

) corresponds to the terms of order greater or

equal to d2

r2
m
neglected here, ωm and φm are given by

ωm = −2πd sin(θm)
λ

(4)

φm =
πd2 cos2(θm)

λrm
(5)
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By exploiting the above approximation, xl(t) in (1) can be
expressed as

xl(t) =
M∑

m=1

sm(t)ej(ωml+φml2) + nl(t) (6)

Throughout the rest of this paper, the following hypotheses
are assumed to be hold:

H1: The source signals sm(t), m = 1, 2, . . . ,M are mutually
independent signals. They are narrow-band and stationary
processes.

H2: The additive noises, nl(t), l = −p, . . . , p are independent
and zero-mean Gaussian processes with covariance σ 2, and
are independent of the source signals.

H3: The impinging DOAs of the sources are not equal, i.e.,
θi �= θj for i �= j.

H4: The interelement spacing of the array is d ≤ λ
4 ; Additionally,

the number of sources is M ≤ 2p.
3. BLIND ESTIMATION ALGORITHM

3.1 Algorithm A
According to H1 and H2 in section 2, a set of space-domain
correlation variables can be defined as:

r−l−1,−l(τ) = E{x−l−1(t + τ)x∗−l(t)}

=
M∑

m=1

rsm(τ)ej(−ωm+φm)e2jlφm

=
M∑

m=1

rsm(0)ej(2πfmτ−ωm+φm)e2jlφm (7)

where rsm(τ)
�
= E{sm(t+τ)s∗m(t)} = rsm(0)ej2πfmτ ; sm(t)

is a narrow-band signal and fm is its frequency and δ(·) is the
Dirac function.
Similarly,

rl+1,l(τ) = E{xl+1(t + τ)x∗l (t)}

=
M∑

m=1

rsm(0)ej(2πfmτ+ωm+φm)e2jlφm (8)

Concatenating r−l−1,−l(τ) and rl+1,l(τ) where l =
−p,−p + 1, . . . , p − 1, we can construct two vectors r1(τ),
r2(τ) with length 2p. They are

r1(τ) = [rp−1,p(τ), . . . , r−1,0(τ), . . . , r−p,−p+1(τ)]T (9)

r2(τ) = [r−p+1,−p(τ), . . . , r1,0(τ), . . . , rp,p−1(τ)]T (10)

Alternative forms for (9)(10) are

r1(τ) = BΦΩ∗rs(τ) (11)
r2(τ) = BΦΩrs(τ) (12)

where

B = [b(φ1) . . . b(φM) ] 2p × M

b(φm) = [ e−2jpφm e−2j(p−1)φm . . . e2j(p−1)φm ]T

rs(τ) = [ ej2πf1τrs1(0) . . . ej2πfM τ rsM (0) ]T

Ω = diag{ejω1, ejω2 , . . . , ejωM }
Φ = diag{ejφ1, ejφ2 , . . . , ejφM }

Fig. 1 The system model of near field scenarios

By sampling r1(τ) and r2(τ) uniformly at N (N > M)
lags τn (τn = Ts,2Ts, . . . ,NTs), the "pseudo snapshots" can
be collected as follows:

R1 = [r1(Ts) r1(2Ts) . . . r1(NTs) ] (13)
R2 = [r2(Ts) r2(2Ts) . . . r2(NTs) ] (14)

And also we have
R1 = BΦΩ∗Rs (15)
R2 = BΦΩRs (16)

where R1 and R2 are with dimensions 2p × N and

Rs =

⎡
⎢⎢⎢⎣

ej2πf1Tsrs1(0) ej4πf1Tsrs1(0) . . . ej2Nπf1Tsrs1(0)
ej2πf2Tsrs2(0) ej4πf2Tsrs2(0) . . . ej2Nπf2Tsrs2(0)

...
...

. . .
...

ej2πfM TsrsM(0) ej4πfM TsrsM(0) . . . ej2NπfM TsrsM (0)

⎤
⎥⎥⎥⎦

If we define two matrices: A �
= BΦΩ∗ and Ψ �

= (Ω)2,
(15) and (16) can be rewritten as

R1 = ARs (17)
R2 = AΨRs (18)

(17) and (18) are basic equations of the ESPRIT method
[5], therefore, Ψ can be estimated directly, and ω1, . . . , ωM
are also calculated in a closed form. To obtain another set
of parameters φ1, . . . , φM , we need obtain A. Because An
ESPRIT-like method — DOA-Matrix method [6] can estimate
A and Ψ jointly in a closed form, it is exploited in this
case without the need of the simultaneous diagonalization of
multiple matrices.
In the DOA-Matrix method, first we define a signature

matrix as
R = R2[R1]− (19)

where [•]− denotes the pseudo-inverse, i.e., R1[R1]− = I.
And we have the following lemma.

Lemma: If A is full column rank, Rs has no zero singular
values, and Ψ has no equal elements on the main diagonal
line, the nonzero eigen values of R equal to the d diagonal
elements of Ψ, and corresponding eigenvectors equal to the d
columns of A, i.e.

RA = AΨ (20)
The detail proof is in [6].
According to the hypotheses and the lemma, once A is

full-column rank, both Ψ and A can be calculated by an eigen
value decomposition (EVD) operation. Because A is with
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dimensions 2p × M , if the number of sources M is less than
2p, A is full column rank and this algorithm holds.
After A is estimated in a closed form, it is easily to estimate

φ1, . . . , φM , because every column of A associates one φm

only, and what is more, the quotient of two adjacent rows
is just e2jφm . Also, the least mean square method can be
used in this case. Note that the ωm and φm are one-to-one
correspondences because they are from the same pair of eigen
value and vector, i.e., the parameters are paired automatically.
Obviously, the pair operation is omitted in the whole process.
The proposed method differs from not only those MUSIC-

based methods which exploit the eigen vectors only and need
the operation of peak searching or rooting, but also those
ESPRIT-based methods which exploit eigen values only and
need the pairing operations. Our method exploits both eigen
values and eigen vectors, and those operations can be skipped.
To estimate the sources’ frequencies f1, f2, . . . , fM , we

perform the transpose operation for R1 and R2 in (17)(18).
Then we have

RT
1 = RT

s AT (21)

RT
2 = RT

s ΨAT (22)

(21) and (22) are also the basic equations of ESPRIT method,
and similarly, DOA-Matrix method can be exploited to calculate
Ψ in a closed-form. Thus, Rs can be estimate in a closed form
like A in (17) and (18). After calculated Rs, the estimation
of frequencies f1, f2, . . . , fM is similar with that of {φm}
from A. It is easily observed that the quotient of two adjacent
columns of row m is ej2πfm in Rs. Thus, the least square
method can also be used. Just like the estimation of φm and
ωm, the φm and fm are auto paired.
Our method exploits both the space-domain and the time-

domain correlations, differing from those exploiting the space-
domain correlation only. Therefore, it can approximately
estimate double independent sources of what other methods did.
Although more correlations are calculated in our algorithm,

the most time-consuming operation is still the EVD operation.
Its times are not increased and some time-consuming operations
like peak searching and pairing are omitted. Our method does
not increase the computational burden on a large scale, which
is still comparable with the conventional ones.

3.2 Algorithm B
If H3 does not hold, a problem exists in algorithm A.

When two {θm} are equal or close very much, two {ωm}
are equal, and the corresponding {φm} can not be estimated
because two calculated eigenvectors are the linear combinations
of two desired one when two eigenvalues are equal. To obtain
the correct signal subspace is very difficult in this case. To
overcome this, another algorithm is proposed, which exploits
the eigenvalues only and can avoid this shortcoming. However,
the maximum number of identifiable sources decreases 1, is
2p − 1 only now.
This simple method is as follows: after estimating {ωm}

from the eigenvalues with algorithm A, we choose the first
2p − 1 rows and the last 2p − 1 rows of R1, namely Ru and
Rd, respectively. Because the quotient of adjacent rows in
column m of A is e2jφm , we have

Ru = R1(1 : 2p − 1, :) = A′Rs (23)
Rd = R1(2 : 2p, :) = A′Φ2Rs (24)

Table 1 The parameters of three sources
Source no. r θ(◦) f(MHz)

1 1/6λ 15 20
2 1/4λ 25 20.2
3 2/5λ 35 19.7

Table 2 The performance of frequency estimation(RMSE)
SNR M=1 M=2 M=3
-10 7.41e-4 3.74e-3 2.58e-2
-5 1.48e-4 1.8e-3 3.88e-3
0 4.30e-5 1.28e-3 2.48e-3
5 1.31e-5 1.1e-3 1.41e-3
10 7.33e-6 8.94e-4 1.22e-3

where A′ = A(1 : 2p − 1, :) is the first 2p − 1 rows of A.

Obviously, we can estimate the Φ by exploiting the ESPRIT
method. Because only the eigenvalues are used in the estimating
method, it can also work when two {θm} are equal. The
pair operation is necessary because the {ωm} and {φm} are
estimated in two EVDs.

The dimensions of Ru and Rd are (2p− 1)×M , therefore,
the maximum identifiable sources in algorithm B is 2p − 1, or
the A’ is not full column rank.

Similarly, f1, f2, . . . , fM can be estimated from R′
u and

R′
d like in Algorithm A because two {φm} are not the same.

4. SIMULATIONS

In our simulations, we adopt a uniform linear array (ULA)
of L = 5 (p = 2) sensors with element spacing d = λ/4.
Nt = 100 independent Monte-Carlo simulations are performed.
The performance is measured by the Root Mean Square Error
(RMSE) defined as

RMSE(x) =
1

‖x‖

√√√√ 1
Nt

Nt∑
i=1

‖x̂(i)− x‖2 (25)

where Nt is the number of Monte-Carlo trials, and ‖ • ‖
represents the Frobenius norm; and x represents the exact
values of parameters, and x̂(i) represents the estimated values
in the i-th Monte-Carlo trials, respectively. x can be either the
impinging DOAs, Θ = {θi}, i = 1,2, . . ., the ranges r = {ri},
i = 1, 2, . . ., or the frequencies F = {fi}, i = 1,2, . . .. In
each trial, 1024 real snapshots and 30 pseudo snapshots are
collected. The paramters of 3 sources are shown in Table 1, all
of them are mean-zero, unit-variance and independent.

Test Case 1— One Source: Consider source 1
impinge the array. Three methods: MUSIC [2] and our
algorithms are measured and their performances are shown in
Fig. 2, where the SNR is defined as SNR = 1/σ2. With
the simulation, we observe that the performances of ours are
better than MUSIC methods when the SNR is relatively low
because our methods can offer more noise subspace when both
space and time correlations are exploited. In addition, the
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time-consuming operations of peak searching and pairing are
omitted in algorithm A.

Test Case 2— Two sources: In this case, source 1
and 2 are present. In order to measure the MUSIC method in
[2], we let the number of sensors L = 6 while those in ours are
still 5. The performance of three methods are shown in Fig. 3.
From the simulations, we observe that ours obtain improved
performance over MUSIC method [2] although it is equipped
more elements.

Test Case 3— Three sources: In this case, three
(M = 3) uncorrelated, unit-variance sources are present. MU-
SIC method in [2] can only identify two sources (for p = 2),
and it can not estimate these nine parameters, while the perfor-
mance of ours are shown in Fig. 4. From the simulations, we
observe that the performance is still acceptable when 3 sources
impinge at a 5-element ULA.
In three simulations, the performances of our two methods

are very close. The reasons is that the dimensions of noise
subspace in algorithm B is less than that in algorithm A, while
all parameters are estimated from eigenvalues in algorithm B.
Although it does not require that H3 holds, obviously the
computational burden in algorithm B is heavier than that in
algorithm A for one more EVD is needed.
The performance of frequency estimation is shown in Table 2,

only the performance of algorithm A is shown because the
performance of two frequency estimation methods are very
close. The sample frequency is 50MHz. From Table 2 we
found the performance of frequency estimation is perfect even
three frequencies are very close.

5. CONCLUSIONS
This paper proposed two near-field sources estimation algo-
rithms by exploiting both the space-domain and the time-domain
correlations where the estimated parameters include the ranges,
frequencies and DOAs. As a result, they can not only identify
double sources of what conventional methods offered, but also
obtain better performance. Furthermore, in one of our methods
the time-consuming peak search and pairing operations can be
omitted completely by exploiting the eigen values and vectors
simultaneously.
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