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ABSTRACT

The number of signals plays a crucial role in array processing.
The performance of most direction finding algorithms relies strongly
on a correctly specified number of signals. When this information
is not available, conventional approaches apply information theo-
retic criteria or multiple hypothesis tests to simultaneously estimate
model order and parameter. These methods are usually computa-
tionally intensive, since ML estimates are required for a hierarchy
of nested models. In the previous work [1], we proposed a compu-
tationally efficient solution to avoid this full search procedure and
demonstrated its feasibility by extensive simulations. Here we ex-
tend [1] to broadband data, and address issues unique to the broad-
band case. Our max-search approach computes ML estimates only
for the maximally hypothesized number of signals, and selects rel-
evant components through hypothesis testing. Another novelty of
this work is the reduction of indistinguishable components caused
by overparameterization. Our approach is based on the rank of the
estimated steering matrix. Numerical experiments show that despite
an unknown number of signals, the proposed method achieves com-
parable estimation and detection accuracy as standard methods, but
at much lower computational expense.

Index Terms— broadband signals, maximum likelihood estima-
tion, direction of arrival, unknown number of signals, overparame-
terized models

1. INTRODUCTION

Direction of arrival (DOA) estimation is a key issue in array pro-
cessing. Among existing methods the maximum likelihood (ML)
approach is characterized by excellent statistical properties and
robustness against small sample numbers, signal coherence and
closely located sources. In contrast to subspace methods, which are
typically designed for narrow band signals, ML is applicable to both
narrow band and broadband data.

Standard ML assumes the number of signals, m, to be known,
and maximizes the likelihood function over an m-dimensional
parameter space. When the number of signals is unknown, conven-
tional approaches, such as methods based on information-theoretic
criteria [2, 3], or multiple hypothesis test procedures [4, 5], jointly
estimate the number of signals and DOA parameters. These methods
are computationally intensive since ML estimates are required for a
hierarchy of nested models.

In the previous work [1], we suggested a computationally attrac-
tive procedure that computes ML estimates only for the maximally

hypothesized model. This max-search approach is motivated by the
fact that the ML estimator derived from an overparameterized model
contains relevant components that coincide with the true parameters
[6]. The relevant components can be selected through simple hy-
pothesis tests [1], or by their contribution to the likelihood function
[7].

Here we extend [1] to broadband data and address related
challenges. Unlike the narrow band case, the test statistic used to
identify relevant components has an unknown distribution. We apply
the Cornish-Fisher expansion [8] to approximate the test threshold.
Moreover, we discuss the identification problem caused by overpa-
rameterization and introduce a criterion to reduce indistinguishable
components.

The proposed procedure is different from the aforementioned
methods [2, 3, 4, 5] in that it is aimed at extracting useful infor-
mation about DOA parameters regardless of whether the number of
signals is correctly specified or not. However, as a byproduct, the
number of relevant components can be considered as an estimate for
the actual number of signals. As it will be shown later, the proposed
max-search procedure is computationally more attractive than the
full search methods.

In the following, we give a brief description of the broadband
signal model. In Section 3, we develop the broadbandML estimation
procedure and derive the Fisher-Cornish approximation to the test
threshold. Simulation results are presented in Section 4, whereas
Section 5 concludes the paper.

2. PROBLEM FORMULATION

Consider an array of n sensors receiving m broadband signals emit-
ted by far-field sources located at θ =[ θ1,. . ., θm]T . The array out-
put x(k)(t), (t = 0, . . . , T − 1) within the kth observation interval
( or snapshot ) is short time Fourier-transformed

X (k)(ω) =
1√
T

T−1∑
t=0

w(t)x(k)(t)e−jωt (1)

where {w(t)}T−1
t=0 is a window function. For large number of sam-

ples T , we can describe the frequency domain data approximately
by the following relation

X (k)(ω) = Hm(ω; θm)S(k)(ω) + U (k)(ω) (2)

where the matrix Hm(ω, θm) = [d1(ω) · · ·di(ω) · · ·dm(ω)]
∈ C

n×m consists of m steering vectors with the ith column di(ω),
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corresponding to the ith incoming wave. The signal waveform
S(k)(ω) is considered to be unknown and deterministic. The noise
U (k)(ω) results only from sensors. According to the asymptotic
Fourier transform theory, X (k)(ωj), (k = 1, . . . , K, j = 1, . . . , J)
are independent, identically complex normally distributed with mean
Hm(ωj ; θ)S(k)(ωj) and covariance matrix ν(ωj)I , where ν(ωj)
is the unknown noise spectral parameter and I is an identity matrix
of conformable dimension.

When the true number of signals is known, i.e. m = m0, the
ML estimate is obtained by minimizing the negative log-likelihood
function:

θ̂m = arg min
θm

lT (θm),

lT (θm) =
J∑

j=1

tr[(I − P (ωj ; θm))R̂(ωj)] (3)

where R̂(ωj) = 1
K

∑K
k=1 X (k)(ωj)X

(k)(ωj)
H represents a non-

parametric power spectral estimate of sensor outputs over K snap-
shots, and P (ωj ; θm) is the projection matrix onto the subspace
spanned by the columns of Hm(ωj ; θm).

When m is unknown, the most successful approaches jointly es-
timate the DOA parameters and the model order. Given a maximally
hypothesized number of signals, the ML estimate is derived for a
hierarchy of nested models

M1 ⊂ M2 ⊂ · · · ⊂ MM .

Such procedures are computationally demanding, due to the multi-
dimensional nonlinear minimization required by each candidate
model. In contrary to this full search idea, we suggest a computa-
tionally simple solution that considers the maximally hypothesized
model MM and extracts DOA information from the corresponding
estimate.

3. BROADBAND ML ESTIMATION FOR UNKNOWN
NUMBERS OF SIGNALS

From the analysis of ML estimation under misspecified numbers of
signals [6], we know that for an overparameterized model, m > m0,
the ML estimate θ∗

m obtained from large sample size is characterized
by the following property

sp(Hm(ω; θ∗
m)) ⊃ sp(Hm0(ω; θ0)) (4)

where sp(Hm(ω; θ∗
m)) and sp(Hm0(ω; θ0)) denote the signal

subspaces corresponding to θ∗
m and θ0, respectively. Furthermore,

θ∗
m contains m0 components equal to those of the true parameter

θ0. Although this result is derived for narrow band signals, it is not
difficult to extend it to the broadband case.

Motivated by the above observation, we suggest to compute the
ML estimate for the maximal possible number of signals, m = M ,
and select relevant components that are associated with the true pa-
rameters. More specifically, the proposed algorithm minimizes the
negative log-likelihood function (3) over an M -dimensional space

θ̂M = arg min
θM

lT (θM ). (5)

Since M ≥ m0, the M × 1 vector θ̂M = [θ̂1, . . . , θ̂M ]T contains
more elements than the m0 × 1 true parameter vector θ0. The
elements of θ̂M that are associated with those of θ0 , are referred
to as relevant components. The remaining (M − m0) components
of θ̂M are the redundant components.

Clearly, the key step in the proposed max-search procedure is
identification of relevant components. In [7], these components are
selected by thresholding the likelihood function, because the redun-
dant components do not change the value of the likelihood function
significantly. Here we extend the hypothesis test suggested in [1] to
broadband signals to validate the ith component:

Hi : X(ω) = HM−1(ω; θ̃i)S̃M−1(ω) + U (ω)

Ai : X(ω) = HM (ω; θ̂M )SM (ω) + U (ω) (6)

where Hi and Ai represent the null hypothesis and the alternative,
respectively. The (M − 1) × 1 vector

θ̃i = [θ̂1 · · · θ̂i−1 θ̂i+1 · · · θ̂M ]T (7)

contains all elements of θ̂M except the ith component. The
n × (M − 1) matrix HM−1(θ̃i) contains steering vectors cor-
responding to the DOA parameters in θ̂M−1. Given the estimate
θ̂M , the hypothesis test (6) decides whether the signal Si(ω) asso-
ciated with the ith component is zero. Note that Si(ω) = 0 implies
θ̂i does not correspond to any actual signal source.

The test statistic Ti, i = 1, 2, · · · , M derived from the likeli-
hood ratio lT (θ̃i) − lT (θ̂M ) is given by

Ti =
1

J

J∑
j=1

log

(
tr[(I − P (ωj ; θ̃i))R̂(ωj)]

tr[(I − P (ωj ; θ̂M ))R̂(ωj)]

)

=
1

J

J∑
j=1

log

(
1 +

n1

n2
Fi(ωj)

)
. (8)

The component θ̂i is relevant if Hi is rejected. Given the signifi-
cance level α, Hi is rejected if Ti exceeds a threshold tα. Conse-
quently,

θ̂i is relevant if Ti ≥ tα. (9)

The output of the algorithm is the relevant vector that contains all
components

θ̂0 = [θ̂(1), · · · , θ̂(k)]
T . (10)

As a byproduct of the proposed algorithm, the number of relevant
components provides an estimate for the number of signals. How-
ever, we emphasize that the primary concern of the proposed ap-
proach is parameter estimation. Unlike methods designed for model
order determination, whose performance is measured solely by cor-
rectness of the number of signals, the output of the proposed algo-
rithm θ̂0 still contains useful information about the true parameters
θ0 even when the number of signals is misspecified.

3.1. Cornish-Fisher approximation for tα

Under the null hypothesis Hi, the statistic Fi(ωj) is Fn1,n2–
distributed with the degrees of freedom n1, n2 given by [4]

n1 = 3K, n2 = K(2n − 2M − 1). (11)

2122



As (8) shows, in the narrow band case, J = 1, the test can be equiv-
alently conducted with the statistic Fi whose distribution is known.
However, for broadband signals, Ti has no closed form distribution
underHi. To overcome this difficulty, we suggest the Cornish-Fisher
expansion to approximate the threshold tα.

Note that the summands in (8) are i.i.d. samples from the ran-
dom variable

Ti = log(1 +
n1

n2
Fi) (12)

where Fi has an Fn1,n2 -distribution. The i.i.d. property follows
immediately from the asymptotic independence of the Fourier-
transformed data X (k)(ωj), j = 1, · · · , J . Since the degrees of
freedom, n1 and n2, are the same for each Fi, Ti, i = 1, · · · , M all
have the same distribution. The threshold tα needs to be computed
only once for a pre-specified test level α.

Let μT = E [Ti] and σ2
T = E [Ti − μT ]2 denote the mean and

variance of Ti. Then the distribution of the normalized test statistic

T̄i =
Ti − μT

σT
(13)

can be approximated by the Edgeworth expansion [9]. The normal-
ized threshold t̄α, the α-quantile of T̄i’s distribution, can be approx-
imated by the Cornish-Fisher expansion [8] as follows:

t̄α ≈ zα +
1√
J

p11(zα) +
1

J
p21(zα), (14)

where zα is the α-quantile of the standard normal distribution and

p11(z) =
κ3

6
(z2 − 1),

p21(z) =
κ2

3

18
z3(z2−1)+z

[
κ4

24
(z2−3)+

κ2
3

72
(z4−10z+15)

]
.

The rth cumulant κr of Ti depends on n1, n2 through the following
formula

κr = (−1)r
[
Ψ(r−1)(

n1

2
) − Ψ(r−1)(

n1

2
+

n2

2
)
]
, (15)

where Ψ(r−1)(s) = dr

dsr (log Γ(s)) denotes the rth derivative of the
logarithm of the gamma function. The mean μT and the variance σ2

T

are related to the cumulants as follows

μT = κ1, σ2
T = κ2. (16)

More details can be found in [10].

3.2. Identification of indistinguishable components

One situation may occur in the proposed algorithm is that the es-
timate θ̂M contains the indistinguishable components, which leads
to a rank deficient steering matrix H(ω; θ̂M ). Note that property
(4) permits such parameters because the underlying model is over-
parameterized. In this case, both the relevant vector θ̂0 and the test
(6) no longer provide satisfying results.

To overcome difficulties caused by overparameterization, we
suggest to examine the smallest singular value σ̂M of the steering

matrix H(ω; θ̂M ). If |σM | ≤ δ where δ is a pre-specified small
positive number, then the procedure computes the ML estimate for
the next reduced model MM−1. If the resulting H(ω; θ̂M−1) is
full rank, then the relevant components are chosen from θ̂M−1.
Otherwise, the same step is repeated for the next reduced model. In
the simulation, we observe that this modified step is carried out only
by 5% of all trials. The computational cost is still much lower than
the full search approach.

4. SIMULATION

In the simulation, a uniform linear array of 10 sensors with inter-
element spacing of half a wavelength is employed. The narrow band
signals are generated by m0 = 2 uncorrelated signals, located at
θ0 = [28◦ 36◦] with respect to array broadside, and of various
strengths. The number of selected frequency bins is J = 11 and the
number of snapshots is K = 50. The difference of signal strengths
is [ 1 0 ] dB, where 0 dB corresponds to the reference signal. The
signal to noise ratio (SNR) varies from −10 to 10 dB in a 2 dB step.
We consider two upper bounds on the number of signals: M = 3
and M = 4. The latter represents a larger mismatch in the model
order. Each experiment consists of 200 Monte Carlo trials. The test
level α is chosen to be 0.05. The parameter δ = 0.02 is used to test
whether the steering matrix is rank deficient or not.

Fig. 1 shows the sample mean of the relevant components θ̂(1),
θ̂(2), respectively. For both M = 3 and M = 4, the bias is less
than 0.06 degree over the entire SNR range. Since the results are
obtained from finite samples, we conjecture that θ̂(1) and θ̂(2) are
asymptotically bias free.

The empirical variance of θ̂(1) and θ̂(2) is presented in Fig.
2. For comparison, we also show results obtained from the no-
mismatch case with M = m0 = 2. All three curves decline with
increasing SNR. The estimates obtained from M = m0 = 2 have
the smallest variance. For both relevant components θ̂(1) and θ̂(2),
M = 4 results in a larger variance than M = 3. This suggests that
the variance increases with a larger degree of mismatch.

In Fig. 3, we compare the probability of correct detection of
the proposed algorithm with the multiple hypothesis testing proce-
dure [5]. By “correct detection”, we mean that the number of rele-
vant components equals the true number of signals. At the low SNR
region, −10 to −4 dB, both M = 3 and M = 4 have a higher
probability of correct detection. For SNR −6 to 10 dB, the multiple
test procedure achieves 100% probability of correct detection, while
M = 3, 4 increase from 90% to 95%. The curve associated with
M = 3 shows a slightly higher probability of correct detection than
that of M = 4.

In summary, simulation results demonstrate that relevant com-
ponents convey useful information about the true parameters even
when the correct number of signals is unknown or misspecified. The
price paid for model uncertainty is increased variance. Furthermore,
the comparison between the proposed algorithm and the full search
procedure [5] showed that without computing ML estimates for each
candidate model, the former has a lower SNR threshold and achieves
good detection performance at high SNRs. The computational time
required by the suggested max-search procedure is on average 35%
less than the full search procedure.

5. CONCLUSION

We have developed a broadband ML estimation procedure for un-
known numbers of signals. The suggested algorithm computes ML
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Fig. 1. Sample mean of relevant components. M = 3, 4. The true
DOA parameter θ0 = [28◦ 36◦], SNR = [−10 : 2 : 10] dB.

estimates only for the maximally hypothesized number of signals.
The relevant components associated with the true DOA parameters
are selected by the simple hypothesis tests. The test threshold is ap-
proximated by the Cornish-Fisher expansion. We also introduce a
criterion to reduce indistinguishable components caused by overpa-
rameterization.

Compared to traditional methods for joint parameter estimation
and signal detection, the proposed max-search approach avoids the
full search process through a series of nested models, which leads
to significant improvement in computational efficiency. Numerical
results showed that the proposed algorithm achieves comparable es-
timation accuracy as the standard ML approach does. The number of
signals can also be accurately determined by the number of relevant
components. The proposed algorithm provides a computationally at-
tractive alternative to existing methods, particularly in the low SNR
region.
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Fig. 2. Empirical variance of θ̂(i), i = 1, 2.
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