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ABSTRACT

Nonlinear parameter estimation often displays a threshold
phenomenon, that is, below certain signal-to-noise ratio
(SNR) the estimation mean-square error (MSE) increases
dramatically. The method of interval errors (MIE) has been
shown to provide accurate MSE prediction of related
nonlinear techniques well into the estimation threshold re-
gion, yet relatively simple and robust in evaluation com-
pared to a global performance bound. However those fea-
tures have not been understood on a strict theoretical basis.
This paper investigates numerical sensitivity of the MIE to
parameter sampling resolution, aiming to understanding,
from information theory perspective, the underlying mecha-
nism leading to robust MSE approximation. A recently-
developed information theory resolution bound is re-
interpreted and applied to specify the parameter sampling
resolution. Numerical evaluation of the relevant results for
array-based bearing estimation supports the proposed con-
nection between the resolution bound and the MIE.

Index Terms— Nonlinear parameter estimation, thresh-
old phenomenon, performance analysis, information theory,
resolution bound

1. INTRODUCTION

Nonlinear parameter estimation, including array-based bear-
ing estimation and matched-field processing, is often subject
to ambiguities due to multimodal structure in signal field
correlation, which is characterized by a mainlobe around the
true parameter position and some unpredictable prominent
high sidelobes elsewhere. Typical performance displays a
threshold behavior, that is, below certain signal-to-noise
ratio (SNR) the estimation mean-square error increases
dramatically. This threshold phenomenon is often under-
stood in the context of the maximum likelihood estimate
(MLE) and in comparison to the performance defined by the
Cramer-Rao lower bound (CRB) [1]. It is well known that
for a sufficiently high SNR or long observation time, the
MLE performance is predicted well by the CRB; however,
for low SNR and short observation time, the MLE mean-
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square error departs significantly from the CRB due to
sidelobe ambiguities.

In order to evaluate the threshold phenomenon, a number
of performance bounds have been developed and exten-
sively applied [2]. Based on the parameter model a perform-
ance bound can be either a local bound if the parameter is
assumed deterministic but unknown or a global bound if the
parameter is assumed random. The local bounds, such as the
local CRB and the Barankin bound, do not exploit any a
priori parameter information and is limited to unbiased es-
timates, while an MLE with nonlinear parameter-
dependence is often biased at low SNR; the prediction is
still far less tight in the threshold region [3]. On the other
hand the global bounds are free of the bias assumption,
yielding a tight performance prediction; evaluation of those
bounds, however, is often subject to numerical sensitivity
otherwise quite demanding in computation [4].

A relatively new method for mean-square-error (MSE)
approximation, called the method of interval errors (MIE),
has also attracted great attentions. MIE was first introduced
for time-delay estimation [1] and later revitalized for bear-
ing estimation and matched-field source localization [5]-[9].
A comprehensive review of this method can be found in Ref.
[9]. MIE decomposes the total MSE into a weighted sum of
two terms: a local error term (ambiguity mainlobe contribu-
tion), and an outlier term for global errors (ambiguity
sidelobe contribution), and is thus directly and explicitly
connected to signal ambiguity structure, lending itself a
quantitative tool for ambiguity analysis in parameter estima-
tion. Besides, it is algorithm specific, and works for deter-
ministic yet unknown parameters. MIE is by now a well
established approach that has been shown to provide accu-
rate MSE prediction of maximum likelihood estimation and
related nonlinear techniques well into the estimation thresh-
old region [9].

Except for some simple problems, both performance
bounds and MIE are evaluated numerically and thus require
the parameter space be properly sampled. One of the advan-
tages of the MIE is that the required computation is at most
the same order as that of a local bound. Evaluation of the
MIE has shown much less sensitivity to both detailed ambi-
guity structure and parameter sampling resolution compared
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to a global performance bound [10]. However this has not
been understood on a strict theoretical basis, and the method
is more interpreted as an ad hoc approach for MSE ap-
proximation.

Recently a new resolution bound has been proposed for
understanding the performance limits from the information
theory perspective [11]. The method divides the search
space into discrete partitions, assigns each candidate pa-
rameter value to one of partitions according to certain prob-
ability distribution, and then estimates which partition the
true parameter belongs to. An error occurs if the estimated
partition is not the true one. The goal is to achieve arbitrarily
small error probability, rather than minimizing the MSE,
and the method has thus not been able to produce a similar
MSE prediction as an MSE bound does. However, the re-
sults do provide an alternative view and some new insights
on the performance behavior in nonlinear parameter estima-
tion.

Motivated by the information theory approach mentioned-
above, this paper investigates numerical sensitivity to pa-
rameter sampling resolution of the MIE, aiming to under-
standing the underlying mechanism leading to robust MSE
approximation. Instead of interpreting the information the-
ory resolution bound as a limit in parameter estimation, we
interpret it as a minimum sampling interval for MIE to
achieve a good MSE approximation. The problem consid-
ered is bearing estimation using an array of sensors, typical
of sonar, radar and communication applications. Numerical
evaluations are implemented to verify the proposed connec-
tion.

2. BEARING ESTIMATION PROBLEM DEFINITION

Consider a uniform linear array of K elements with spacing
d (in units of half-wavelengths). A far-field narrowband
source is located at direction 8. The baseband array output
is a Kx1 complex vector denoted by

x(t)=a(6)s(t)+n(t), t=1..N, )
where a(6)=[1 aifr(Kfl)dsine]r

manifold vector, s(7) is the complex impinging signal

e /misne is the array

waveform, n(z) is an additive noise term, and N is the

number of independent snapshots.

The source process is assumed to be stationary, zero-
mean, complex Gaussian with variance o7 . The noise proc-
ess is assumed to be stationary, spatial-temporally white,
zero mean, complex Gaussian with variance o . Therefore,
the covariance matrix of the array output is

K, =0 a@a®)" +0,1,, 2)
where I, isa K XK identity matrix.

The maximum likelihood estimate is then given by

A

6, :arggnaxi|a"(€)x(t)|2 : (3)
t=1
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Clearly the MLE output in (3) is a function of the signal
field correlation defined by |a(6)H a(6,) 2, where 6 and 6,

denote the true and scanning parameters, respectively. It is
often called the signal ambiguity function due to its multi-
modal structure as a function of &, which comes from the

nonlinear dependence of the signal field on the embedded
parameter.

3. METHOD OF INTERVAL ERRORS

The method of interval errors is based on the following ob-
servations [1]. In the high SNR region, the peak of the true
parameter protrudes prominently above the noise and can be
located accurately; the estimation error is due to slight,
noise-introduced distortion of the true peak and can be well
predicted by the Cramer-Rao bound. In the low SNR region,
the true peak could be below the noise level and obscured
by other ambiguous peaks; a larger error arises when a
wrong peak is selected.

Consider a discrete set of scanning parameter points, {6, ,
6, ,...}, in MLE implementation, and suppose the true pa-
rameter point is one of them, 6, . It is shown that the exact
error probability at any scanning point 6, # 6, is, by the

first-order approximation, the error probability of the likeli-
hood ratio test (LRT) associated with 6, and 6, [10], de-

noted by P,(6,

good at moderate to high SNR.

To apply the MIE to performance analysis of the MLE,
the entire parameter interval is first divided into multiple
( N, ) sub-intervals so that, except the mainlobe sub-

0,,) . The approximation is particularly

interval, each sub-interval contains an apparent sidelobe
structure. Each sub-interval is then denoted by the sidelobe
peak point, 8, i=1L..,N,, —1, and the LRT error prob-
ability is used as the probability that an estimate falls into
this subinterval. Finally the mean-square error for the given
true parameter 6 , can be approximated by

Nint =1
SI%/ILE (6s0) = (1 - z Pe (951'
i=1

si 2

9so))>< CRB(6,)
NG

Nint =1 2
+ z (Pe (exi eso)x(exi _gxo) )
i=1

For the problem defined in Section 2, the CRB for source
bearing estimation is stated by [5]:

K -SNR+1
27°NK*V - SNR*
where SNR is defined as o /o

n?

)

and ¥ is the variance of
the element position distribution. The LRT error probability

is also derived as [5]
1 E(2N-1),
e 2 [ Jq . (©

Pe (651'
(1 +4, m=0\ M

0&0) =



where

o

and 7, is the relative sidelobe level defined by

r, 2[a8)"a6,)[ /K. ®)

At very low SNR, the MLE MSE goes to the variance of
the a priori parameter distribution [4]. The MIE tends to
over-predict the MSE in this region due to the approxima-
tion nature of the calculation. Thus the minimum of (4) and
the worst-case MSE determined by the a priori parameter
distribution is usually chosen as the MSE prediction [9].

4 2 K 2+ 2 4 2 K 2+ 2
0.(K0. +0,) || 1422 K0 +9,)
K o (1-r;) K o (1-r;)

(N

4. INFORMATION THEORY BOUND

The information theory bound in Ref. [11] is derived based
on a general model for parameter estimation, as shown in
Fig. 1. It is similar to a communication system if interpret-
ing the parameter as the message, parameter-observation
mapping as signal channel propagation, and the estimator as
a decoder.

A
w X y 3cti w
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5 S Signal = Received Parameter
Vector Data Estimate
Noise| n

Figure 1: A general parameter estimation model

Assume the set of possible parameter values is partitioned
into / grid cells with / random. Thus at least H (/) bits of
information is required to describe which cell contains the
true parameter, where H (/) is the information entropy of /.
The general model in Fig. 1 also establishes a Markov chain,
and from the relevant information processing theory, the
following condition has to be met to estimate / with arbi-
trarily small positive (ASP) probability of error [11]:

I(x,y)2I(w,W)>H(), ©)
where /() denotes the mutual information.

For the bearing estimation problem in Section 2, we as-
sume the bearing angle of the source varies from 6=-m/2 to
60=n/2 and divide that interval into / disjoint partitions with
equal width of A@=x/l. From (9), a lower resolution
bound on bearing partition can be derived using (1) and (2)
(see also Ref. [11]), which is stated by

agsplSml T
K| 1+K-SNR
Note that this resolution bound only provides a necessary
condition to achieve ASP probability of error, not a suffi-
cient condition, i.e., a partition meeting (10) does not guar-
antee achieving ASP probability of error.

(10)
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5. CONNECTION BETWEEN THE RESOLUTION
BOUND AND THE METHOD OF INTERVAL
ERRORS

An alternative interpretation on the results in Section 4 is
that even though the partition number / itself can be arbi-
trarily small, it can not be correctly estimated due to the
limitation in parameter-observation mapping (channel
propagation). Equivalently to say, the channel ‘smears’
some of the information the parameter partition contains.
Thus in the output end, a parameter partition less than the
resolution bound defined in (10) does not improve the per-
formance in parameter estimation.

MIE is essentially a partition-based method. The parame-
ter space is partitioned according to a parameter sampling
step and then on the basis of that, a set of partitions is grou-
ped into an individual sub-interval. Previously evaluation of
the MIE showed that the method is not sensitive to the accu-
rate positioning of the sidelobe peaks. As long as each major
sidelobe structure is properly sampled, MIE gives very con-
sistent MSE approximation. This robustness could be ex-
plained in connection with the above discussions. When the
parameter partition size (sampling step) decreases to the
order of the lower limit of (10), it improves the MSE predic-
tion a parameter partition-based method such as MIE can
provide; as the parameter partition decreases further from
the lower limit, the performance prediction can no longer be
improved.

To verify the connection proposed above, some numerical
evaluations are implemented. The number of array elements
used is 13 (spaced by half-wavelength), and the source is
assumed at broadside (6 =0). 50 snapshots are used in ev-

aluation and thus a correction factor of 10log50 =17 dB is

added to the SNR to account for the snapshot gain. For
Monte Carlo simulation of the MLE MSE, 10000 trials are
implemented at each SNR.

MSE
: ] : ———CRB
A . L LI +  simulation H
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Figure 2: MSE vs. integrated SNR, 50 snapshots, parameter
sampling step 0.01: CRB (dash line), MIE MSE approxima-
tion (solid line), and MLE simulations (*).



Fig. 2 shows the MIE MSE approximation and the
Cramer-Rao bound, together with the MLE Monte-Carlo
simulation results. A parameter sampling step of 0.01 (in
radians) is selected. The threshold phenomenon can be
clearly seen, and for most of the SNR region, the MIE ap-
proximation agrees very well with the MLE simulation. The
threshold SNR prediction is at 18.8 dB, defined as the SNR
at which the MIE MSE departs form the Cramer-Rao Bound
by 3 dB.
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Figure 3: MIE MSE vs. integrated SNR, 50 snapshots, pa-
rameter sampling steps are: 0.01 (solid line), 0.05 (*), and
0.07 (circle). The CRB is also shown.

To investigate the partition sensitivity issue, different
bearing angle sampling steps are selected in evaluating the
MIE. As shown in Fig. 3, when the sampling step is greater
than 0.05, the MIE is not able to give accurate MSE predic-
tions starting from the threshold SNR; however, when the
sampling step falls below 0.05, there is no significant differ-
ence in MIE MSE approximations.

At the threshold SNR, the resolution bound derived from
(10) is evaluated at 0.04. It says that a sampling step of 0.04
is good enough to yield an accurate MSE prediction using
MIE. This is consistent with the selection of the sampling
step in evaluating the MIE, and implies that the proposed
connection could be true.

6. CONCLUSION

The method of interval errors is a relatively simple yet effi-
cient tool for MSE prediction in nonlinear parameter estima-
tion. In this paper, we have investigated one of the impor-
tant features of the MIE, numerical stability in regard to
selection of parameter sampling step, and explain the results
using a recently-developed information theory resolution
bound. This is done by interpreting the resolution bound as a
minimum partition (sampling) interval for MIE to achieve a
good MSE approximation, rather than a limit in parameter
estimation. Numerical evaluation in an array-based bearing
estimation problem verifies the proposed connection.

Research on detection/estimation is long connected to in-
formation theory, for example, both the Chernoff bound and
the Fisher Information can be derived in the framework of
information theory. Even though the result in the current
paper is quite preliminary, it is intended to trigger more in-
terests toward that direction.
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