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ABSTRACT

The range–based localization problem often arises in TOA or RSSI
based position estimation schemes. It is well–known that such a lo-
calization problem can be formulated as a nonlinear least-squares
(NLS) estimation problem. In this paper, we formulate the prob-
lem as a constrained optimization problem, which is equivalent to
the general NLS problem. By using a greedy optimization strategy,
we derive a simple iterative algorithm with closed–form expressions
for the NLS localization, which can be implemented in a distributed
way. Simulation results show that the localization performance of
the proposed localization algorithm is very close to the Cramer–Rao
lower bound.

Index Terms— Range–based localization, Nonlinear least–
squares estimation, Iterative algorithm

1. INTRODUCTION

With the emergence of various location–based services and other po-
tential applications in wireless communication networks, positioning
in wireless networks has received a great deal of attention in the past
decade [1]. In general, positioning involves two steps. The first
step is to estimate position–related signal parameters, e.g., time of
arrival (TOA), received signal strength (RSS), time difference of ar-
rival (TDOA), etc, based on which the position is estimated in the
second step. Among the above signal parameters, TOA and RSS can
be translated into range or distance measurements based on signal
propagation models. Localization using range measurements is re-
ferred to as range–based localization. In the rest of paper, we assume
range–measurements have been obtained from the estimated TOA or
RSS signal parameters.

The principle of the range–based localization is rather simple.
Given a set of range measurements ri (i = 1, 2, · · · , n) between a
target node whose location is unknown, denoted by x ∈ R

d (d=2
or 3), and several reference nodes with known location, denoted by
ai ∈ R

d (i = 1, 2, · · · , n), the objective of the range–based local-
ization is to estimate the position of the target node from the given
range measurements. Mathematically, the range–based localization
problem can be interpreted as a problem of solving a system of non-
linear equations given by

‖x − ai‖ = ri, i = 1, 2, · · · , n. (1)

The problem (1) can be easily solved when range–measurements
are noise–free. However, due to the error in range–measurements,
the system of nonlinear equations are inconsistent, that is, there is
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no solution for the problem (1). Hence, the range–based localiza-
tion problem is often approached by solving the following nonlinear
linear–squares (NLS) estimation problem:

min
x

J(x) =

n∑
i=1

(||x − ai|| − ri)
2

(2)

which is known as the best approach if the errors in range measure-
ments are i.i.d Gaussian with zero mean. Solving the problem (2)
perfectly is not easy. Common approaches to the problem are local
search methods such as gradient–descent method or Gauss–Newton
method [1] which fall into the category of iterative algorithms. These
methods generally have to perform non–exact line search (e.g., back-
tracking line search [3]) at each iteration in order to choose a right
stepsize that guarantees the nonincreasing of the value of the NLS
cost function in (2). It is known that the non–exact line search
requires evaluating the cost function a few times at each iteration,
which results in the inefficiency of the above iterative algorithms.

A better NLS localization approach, called approximate maxi-
mum likelihood (AML), was proposed in [4]. In essence, the AML
method is also of iterative form. For 2-D localization case (i.e.,
x=(x, y)), starting from some initial (x, y), the authors of [4] first
changes the gradient equations (derived by setting the gradient of
the NLS cost function ∇J(x) equal to zero) into two linear equa-
tions in the unknown (x, y), from which x and y can be respectively
expressed as a linear function of (x2 + y2). Substituting the de-
rived expressions of x and y into x2 +y2 yields a quadratic equation
in (x2 + y2). After solving the quadratic equation for the value
of (x2 + y2), x and y are then obtained by substituting the value of
(x2+y2) into the linear expressions. Repeating the above procedure
with the new values of (x, y) q times (the authors repeat five times),
the AML method derives q values of (x, y). The authors select the
(x, y) that give the smallest value of the cost function as the final
solution. In the AML method, a root selection routine requiring cost
function evaluation is necessary when there are two positive roots
or no positive roots for the quadratic equation. The AML method’s
computational complexity is equivalent to that of evaluating the cost
function 3q times. A drawback of the AML method is that there is
no theoretical result about the final solution.

In addition to NLS localization approaches, various versions of
linear least–squares (LLS) methods have been proposed (see [2] and
reference therein). They are suboptimal in general but rather simple.
The LLS solutions can be used as a good initial estimate for NLS
approaches. The localization performance of various LLS localiza-
tion methods has been studied in [2], where it is shown that, the LLS
method [5] by subtracting the average of quadratic equations (ob-
tained by squaring both sides of (1)) from all equations outperforms
the one by subtracting one of quadratic equations.
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In this paper, a new formulation with equality constraints is pro-
posed for range–based localization, which is proved to be equiva-
lent to the general NLS position estimation problem as shown in (2).
The new formulation seems to be more complex. However, by using
a greedy optimization strategy, an easily realizable iterative local-
ization algorithm is obtained. The algorithm can be implemented
in a distributed way1, which is an advantage over other localization
algorithms presented above. Simulation results show that the local-
ization performance of the proposed algorithm is very close to the
Cramer–Rao lower bound (CRLB).

2. PROBLEM FORMULATION

The new formulation for the range–based localization is given by

min
x,x̄

n∑
i=1

||x − xi||2

subject to ||xi − ai||2 = r2
i i = 1, 2, · · · , n

(3)

where x̄ = (x1, x2, · · · , xn) denotes a vector obtained by stacking
all vectors xi ∈ R

d. The idea behind this formulation is to find a
point x that minimizes the sum of distances to the circles or spheres.

Proposition: The problem (3) is equivalent to the problem (2) in
the sense that the solution in x of the problem (3) minimizes J(x).

Proof : Define the lagrangian function associated with the prob-
lem (3) as

L(x, x̄, λ) =

n∑
i=1

||x − xi||2 +

n∑
i=1

λi(||xi − ai||2 − r2
i ) (4)

where λ = (λ1, λ2, · · · , λn) is the lagrangian multiplier vec-
tor. From the Karush–Kuhn–Tucker (KKT) condition, the optimal
primal–dual pair, denoted by (x∗, x̄∗, λ∗), must satisfy

∇xL = 2

n∑
i=1

(x∗ − x∗
i ) = 0 (5a)

∇xiL = 2(x∗
i − x∗)+2λ∗

i (x
∗
i − ai) = 0, i = 1, 2, · · · , n (5b)

||x∗
i − ai||2 = r2

i , i = 1, 2, · · · , n (5c)

where L is the abbreviation of L(x, x̄, λ).
There may be two cases about x∗. One is that x∗ is not either

of ai, i = 1, 2, · · · , n, and conversely the other is that x∗ is one of
ai, i = 1, 2, · · · , n.

Let us first look at the first case: x∗ is not either of ai, i =
1, 2, · · · , n. From (5b), it is readily known that all λ∗

i must not be
−1 since otherwise x∗ is either of ai, i = 1, 2, · · · , n. This means

that 1+λi �= 0 for all i. Thus, we have from (5b) x∗
i = ai+

x∗−ai
1+λ∗

i
,

and substituting x∗
i into (5c) yields |1 + λ∗

i | = ||x∗−ai||
ri

, which

means 1 + λ∗
i may be either

||x∗−ai||
ri

or − ||x∗−ai||
ri

. Correspond-

ingly, x∗
i = ai + ri

x∗−ai
||x∗−ai|| or x∗

i = ai − ri
x∗−ai

||x∗−ai|| . In fact,

observing that∥∥∥∥x −
(

ai + ri
x − ai

||x − ai||
)∥∥∥∥

2

= (||x − ai|| − ri)
2

< (||x − ai|| + ri)
2 =

∥∥∥∥x −
(

ai − ri
x − ai

||x − ai||
)∥∥∥∥

2
(6)

1Distributed localization methods are beneficial to localization in power–
limited wireless sensor networks [6]. As compared to the centralized local-
ization methods which require the transmission of all range–measurements
from reference nodes (i.e., sensor nodes) to a fusion center, the distributed
methods are energy–efficient since they avoid the transmission of all ranges.

holds for all x �= ai, we can determine 1 + λ∗
i = ||x∗−ai||

ri
and

x∗
i = ai + ri

x∗−ai
||x∗−ai|| when λ∗

i �= −1.

Below we are to show that x∗ minimizes J(x), that is, x∗ is a
global minimizer of the problem (2). To arrive at a contradiction, we
assume x∗ is not a global minimizer of (2). Due to the fact that, for
any x �= ai, i = 1, 2, · · · , n, it must hold that

n∑
i=1

(||x − ai|| − ri)
2 =

n∑
i=1

∥∥∥∥x −
(

ai + ri
x − ai

||x − ai||
)∥∥∥∥

2

, (7)

the global minimizer of the problem (2) must be one of ai, i =
1, 2, · · · , n. Without loss of generality, we assume it is a1. Then we
have

n∑
i=1

(||a1 − ai|| − ri)
2 <

n∑
i=1

∥∥∥∥x∗ − ai − ri
x∗ − ai

||x∗ − ai||
∥∥∥∥

2

. (8)

It is not difficult to verify that the point given by (a1, ȳ) where

ȳ = (y1, y2, · · · , yn),

yi = ai + ri
a1 − ai

||x − ai|| , i = 2, 3, · · · , n,

y1 is any x1 that satifies ||x1 − a1|| = r1

satisfies all equality constraints of the problem (3). Moreover, one
can see that (a1, ȳ) yields a smaller value of the objective function
in (3) than the point (x∗, x̄∗) in terms of (8), which contradicts to
the fact that (x∗, x̄∗) is the global minimizer of the problem (3).
Therefore, x∗ minimizes J(x).

Then let us look at the second case: x∗ is one of ai, i =
1, 2, · · · , n. We assume without loss of generality x∗ = a1. Then
we must have

x∗
i = ai + ri

a1 − ai

||a1 − ai|| , i = 2, 3, · · · , n,

x∗
1 is any x1 that satifies ||x1 − a1|| = r1,

n∑
i=1

(||a1−ai|| − ri)
2 ≤

n∑
i=1

(||aj − ai|| − ri)
2, j = 2, 3, · · · , n,

and for any x �= ai, i = 1, 2, · · · , n

n∑
i=1

(||a1 − ai|| − ri)
2 ≤

n∑
i=1

∥∥∥∥x − ai − ri
x − ai

||x − ai||
∥∥∥∥

2

.

This means that x∗ minimizes J(x).
From the above analysis, we conclude that the problem (3) is

equivalent to the problem (2). �
Although the second case has been discussed in the proof above,

this case nearly always doesn’t occur in practical scenarios. Thus an
(nearly always) valid assumption can be made that the global mini-
mizer of the problem (2) is a stationary point of J(x) (i.e., not either
of ai, i = 1, 2, · · · , n), which is also implicitly used in gradient–
related localization algorithms, e.g., the AML [4]. Under the as-
sumption, we propose the following algorithm based on a greedy
optimization strategy.

3. GREEDY LOCALIZATION ALGORITHM

The proposition tells us the problem (2) can be addressed by solving
the problem (3), for which a greedy algorithm is available. Starting
from a point x �= ai (i = 1, 2, · · · , n), we first solve (3) for xis
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while fixing x. Equivalently, we minimize ‖xi − x‖2 subject to
‖xi − ai‖2 = r2

i for each i. Using the Lagrangian method, we
derive

xi = ai + ri
x − ai

‖x − ai‖ , i = 1, 2, · · · , n. (9)

Next, we solve (3) for x while fixing xis and obtain x = 1
n

∑n
i=1 xi.

It is readily known that repeating the above procedure will result in
nonincreasing of the objective function in (3). On the other hand,
because the objective function has a lower bound (and is continu-
ous), the algorithm by repeating the above procedure must converge.
In particular, the algorithm can be simply written as in an iterative
form

xk+1 =
1

n

n∑
i=1

(
ai + ri

xk − ai

||xk − ai||
)

. (10)

Assume the algorithm converges to x. Based on (10), we have

x =
1

n

n∑
i=1

(
ai + ri

x − ai

||x − ai||
)

. (11)

By simple manipulation on (11), it is obtained

∇J(x) = 2

n∑
i=1

(||x − ai|| − ri)
x − ai

||x − ai|| = 0. (12)

This means the convergence point x is a stationary point of J(x).
One can see that the iterative algorithm is closed–form and can

be easily implemented since it does not require choosing a stepsize
at each iteration. Moreover, it can be implemented in a distributed
way as follows. Each reference node i but the last node n com-

putes xk
i = ai + ri

xk−ai

||xk−ai|| based on the current estimate xk and

passes the current estimate xk and the sum of all calculated xk
i , i.e.,∑i

j=1 xk
j , to the next node (i + 1). The last node computes xk

n

and xk+1 = 1
n

(∑n−1
j=1 xk

j + xk
n

)
, and then passes xk+1 to the

first node. Repeat the above process until the convergence criterion
‖xk+1 − xk‖ ≤ ε/(2n) is met. Here ε is a small scalar. Note that

‖xk+1 − xk‖ =

∥∥∥∥∥
1

n

n∑
i=1

(
ai + ri

xk − ai

||xk − ai||
)
− xk

∥∥∥∥∥
=

1

2n
‖∇J(xk)‖.

(13)

Hence, the convergence criterion is equivalent to ‖∇J(xk)‖ ≤ ε.

4. PERFORMANCE EVALUATION

In this section, simulations are conducted to show the localization
performance of the proposed algorithm. We will compare it with
other localization algorithms2 including AML [4], LLS [5]. Note
that, we use the LLS solution as the initial point of our algorithm.
Also, the CRLB [2] is provided as reference. In simulations, nodes
are located within the region [0, 100]unit×[0, 100]unit, and the range
measurements are corrupted by i.i.d Gaussian noise with zero mean
and variance of σ2.

4.1. Convergence performance

Here, we compare the convergence performance of the proposed al-
gorithm with that of the gradient–descent (GD) algorithm. In simu-
lations, n, ε and σ are taken to be 5, 0.1 and 10, respectively. For the

2Due to page limitation, we will not give a comparison with distributed
localization algorithms.

Fig. 1. An example comparison of convergence.

GD algorithm, the convergence criterion is ‖∇J(x)‖ ≤ 0.1. Hence,
the convergence criteria for two algorithms are the same. Many tri-
als are conducted, in each of which, nodes are randomly placed. It
is found that, the proposed algorithm may require more iterations to
converge than the GD algorithms. However, due to the backtrack-
ing line search method used at each iteration of the GD algorithm,
the computational complexity of the GD algorithm is nearly always
higher than the proposed algorithm (similar results can also be found
for the Gauss–Newton method). An example comparison is shown
in Fig. 1. In the example, the GD algorithm with3 α = 0.25 and
β = 0.5 (α = 0.1 and β = 0.8) equivalently evaluates the cost
function 23 (98) times while the proposed algorithm equivalently
evaluates the cost function 13 times4. It is also observed that, in gen-
eral, 20 iterations are sufficient for one to achieve a good position
estimate.

4.2. Localization performance

Below we compare the localization performance of the proposed al-
gorithm with other algorithms. We first consider the general case
where reference nodes are not located on a straight line. This case
can be further divided into two subcases where it is known that the
LLS algorithm may behave quite differently. The one is that in which
the target node is located inside the convex hull of reference nodes
and the other is that in which the target node is outside the convex
hull of reference nodes. An example is shown in Fig. 2, where target
nodes are denoted by triangles and reference nodes are denoted by
dots; the “inside” case is labeled with blue color and the “outside”
case is labeled with red color.

In various noise levels (σ = 2, 4, 6, 8, 10), 5000 Monte Carlo
simulations are conducted for each case as shown in Fig. 2. The
performance is evaluated in terms of the root mean squared error

(RMSE) given by RMSE =
√

1
5000

∑5000
i=1 ‖xi

est − x‖2 where xi
est

denotes the estimate of the i-th simulation. The simulation results for
the “inside” case and the “outside” case are respectively presented in
Fig. 3 and Fig. 4. The plots show that, in both cases, the localization
performance of the proposed algorithm is very close to the CRLB
and is a bit higher than that of the AML method.

3α and β are two control parameters in the backtracking line search
method [3]. The choice of α and β influences the convergence rate of the
GD algorithm. Note, in general, it is not easy to make a better choice.

4Note that, the computational complexity of each iteration of the
proposed algorithm and of the main update step of the GD algorithm
(i.e.,xk+1=xk−μk∇J(xk)) are both equivalent to that of evaluating the
cost function one time.
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Fig. 2. The node placement of two general localization cases.

Fig. 3. The localization performance of the “inside” case.

Fig. 4. The localization performance of the “outside” case.

We then consider the special case where reference nodes are
collinear, for which, all LLS methods as well as the initialization
method used in the AML are infeasible. Ambiguity occurs in this
case because the cost function has two global minimizer. However,
the ambiguity can be eliminated if there is some prior information on
the location of the target node or there are additional reference nodes
that is not on the straight line. In simulations, four reference nodes
are fixed at (20,30), (40,30), (50,30) and (90,30), and the target node
is at (65,85). We assume it has been known that the target node lies
above the line formed by the reference nodes. Hence, in each simula-

Fig. 5. The localization performance of the “collinear” case.

tion our algorithm as well as the AML can be initialized from a good
initial estimate given by x0=ai+(0, ri) where i=arg minj rj . The
simulation result is plotted in Fig. 5, which shows that our algorithm
can achieve the CRLB while the AML method behaves quite badly.
This is due to that our algorithm must converge to the nearest sta-
tionary point to the initial point while the AML method may jump to
the other stationary point that also minimizes J(x).

5. CONCLUSION

We have proposed a new formulation for the range–based localiza-
tion and a simple iterative localization algorithm with near–optimal
performance. As compared to the AML method, our algorithm is
more flexible in the sense that our algorithm can be directly used
in the three (or even higher) dimensional case. Moreover, the new
formulation maybe very useful since with this formulation the NLS
localization problem (2) can be completely solved by using Gröbner
bases [7] to the KKT equation (5).
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