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ABSTRACT

A novel algorithm for estimating multi-dimensional damped

harmonics is proposed. A matrix polynomial is formed from

the weighed sum of multiple shift invariances contained in

the data model. Necessary and sufficient conditions are deri-

ved that reveal that the damped harmonics can be uniquely

determined from the roots of the matrix polynomial. The pro-

posed algorithm reveal a seamless link between two important

classes of search free subspace methods. The classical rooting

based harmonic estimation methods that exploit the complete

invariance structure and the single invariance ESPRIT algo-

rithms. We show that both approaches can be expressed un-

der this general framework by an appropriate choice of the

weights.

Index Terms— Direction-of-arrival estimation, damped

harmonic retrieval, shift invariance, ESPRIT, root-MUSIC

1. INTRODUCTION

The multi-dimensional (MD) damped harmonic retrieval

(HR) problem is underlying a variety of important enginee-

ring applications. Classical examples include sensor array

processing for radar and sonar applications, geophysics, mo-

bil communications, chemical spectroscopy, diagnostic ima-

ging, and condition monitoring of rotating machinery.

Numerous search-free subspace based methods have been

proposed that exploit the underlying Vandermonde structure

of the signal model and yield estimates of the MD harmonics

as closed-form solutions, e.g. as the solution of a generalized

eigenvalue problem [1, 2]. In general this contributions can

be classified in two categories: the rooting based methods as

e.g. the 2D root-MUSIC algorithm [3] and the ESPRIT based

methods [1, 2, 4]. While the former methods take advantage

of the full Vandermonde structure contained in the data, the

ESPRIT algorithm only exploits a specific shift-invariance,

thus leading to reduced asymptotic performance. However,

an attractive feature of the ESPRIT-type methods is that they

naturally generalize to damped harmonic scenarios [5, 6].

This is not the case for the rooting-based methods.

In this paper the approach in [7, 8] is further generalized

to include appropriate weighing of the individual shift in-

variances. New identifiability results for the rooting based

weighed multiple invariance (WMI) approach are derived,

that give further insight in the underlying estimation problem

and yield a smooth transition between the single invariance

(SI) and multiple invariance (MI) approach. The paper is or-

ganized as follows. The signal model is formulated in section

2. In section 3 the WMI-root ESPRIT-algorithm is derived

from the MI equations. In section 4 uniqueness conditions for

the roots of the associated matrix polynomials are provided.

Implementation specific aspects of the proposed algorithm

are discussed in section 5. Simulation results are given in

section 6 before section 7 concludes the paper.

Notation: The transpose is denoted by T , the complex con-

jugate Hermitian transpose by H . The expectation operation

is denoted by E{·}, � denote element-wise multiplication, ⊗
denotes the Kronecker product, ◦ denotes the Khatri-Rao pro-

duct, diag {·} converts a vector to a diagonal matrix with the

vector place on the main diagonal, vec{·} converts a matrix

into a vector stacking the columns of the matrix, Ik denotes

the k × k identity matrix, and 0k,l denote the k × l matrix

containing zeros in all elements. We write A > (≥)B for

two arbitrary square Hermitian matrices A and B if A − B
is positive (semi) definite, respectively.

2. SIGNAL MODEL

A superposition of P complex exponentials is observed along

two independent sampling axis labeled as a-axis and b-axis.

Let ap ∈ C with ap ≤ 1 denote the pth signal generator. Whi-

le a uniform sampling grid is assumed along the a-axis, for

sake of generality, we impose no restrictions to the sampling

and generator structure along the b-axis. In matrix represen-

tation the signal model associated with the nth observation

reads

Y n =
P∑

p=1

bpa
T
p xp,n + Nn ∈ C

L×K (1)

for n = 1, . . . , N . Here, ap = [1, ap, a
2
p, . . . , a

K−1
p ]T and

bp = [bp,1, . . . , bp,L]T are the generator vectors of the pth

signal, and Nn ∈ C
L×K is the corresponding noise matrix.

After vectorization equation (1) becomes yn = Hxn + nn
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where yn = vecY n, H = AK ◦ BL is the KL × P 2D

signal generator matrix formed from the K × P Vandermon-

de a-axis generator matrix AK = [a1, a2, . . . ,aP ] and the

L × P unstructured full column rank b-axis matrix BL =
[b1, b2, . . . , bP ], xn = [x1,n, x2,n, . . . , xP,n]T is the P × 1
amplitude vector, and nn is the LK × 1 vector contains the

zero-mean complex white Gaussian noise of variance σ2. The

covariance matrix and its sample estimate read

R = E
{
ynyH

n

}
= HSHH + σ2I (2)

R̂ =
1
N

N∑
n=1

ynyH
n (3)

respectively, where S = E
{
xnxH

n

}
is the full rank P ×P si-

gnal amplitude covariance matrix. We write the eigendecom-

positions of the matrices (2) and (3) as R = USΛSUH
S +

UNΛNUH
N and R̂ = ÛSΛ̂SÛ

H

S + ÛN Λ̂N Û
H

N where

the diagonal P × P matrices ΛS and Λ̂S contain the L
signal-subspace eigenvalues of R and R̂, respectively, and

the (KL − P ) × (KL − P ) diagonal matrices ΛN and Λ̂N

contain the KL−P noise-subspace eigenvalues of R and R̂,

respectively. In turn, the columns of the KL×P matrices US

and ÛS contain the signal-subspace eigenvectors of R and

R̂, respectively, whereas the KL × (KL − P ) matrices US

and ÛS are composed of the noise-subspace eigenvectors of

R and R̂, respectively.

3. THE WMI-ROOT ESPRIT ALGORITHM

In the derivation of the invariance properties inherent in signal

model we observe that the generator matrix can be expres-

sed as H =
[
BT

L, (BLΔa)T , . . . , (BLΔK−1
a )T

]T

, where

Δa = diag{a1, a2, . . . , aP } is the diagonal shifting matrix.

We further define the upper- und lower-kL-row-masked si-

gnal generator matrix as

Hk = Ak ◦ B =
(
JK,k ⊗ IL

)
HK (4)

Hk = Ak ◦ B =
(
JK,k ⊗ IL

)
HK , (5)

respectively, where Ak = JK,kAk and Ak = JK,kAk with

the K × K masking and shifting matrices

JK,k =
[
0K−k,k 0k,k

IK−k 0K−k,k

]
; JK,k =

[
0k,k 0K−k,k

0K−k,k IK−k

]
. (6)

Thus the matrices Hk and Hk are formed from H by setting

the entries in the kL first and last rows to zero, respectively.

Further, in the formation of Hk the non-zero rows obtained

from masking H are shifted up by k rows to match the corre-

sponding non-zero rows in Hk. Equipped with these definiti-

ons we are now ready to express the multiple shift invariances

as

Hk = HkΔk
a (7)

for k = 1, . . . , K−1. The classical ESPRIT algorithm makes

use of a SI, e.g. the algorithm is deduced from (7) for k = 1.

The algorithm proposed in this contribution however is desi-

gned to exploit multiple shifts an therefore extract more in-

formation contained in the rich structure of the signal model.

Towards this aim we multiply the matrices in (7) from the left

with the row masked matrices HH
k in (5) to obtain shift inva-

riance equations of identical dimensions P × P independent

of the choice of k. Later, the analysis of section 4 will reveal

why this specific choice of left multiplication is particularly

suitable. Subtracting the right side of the invariance equation

we obtain

HH
k Hk − HH

k HkΔk
a = 0P,P (8)

for k = 1, . . . , K − 1. The idea of the proposed algorithm is

to form a linear combination of the shift invariance equations

(8), hence

K−1∑
k=1

ck

(
HH

k Hk − HH
k HkΔk

a

)
= 0P,P (9)

for linear weighting coefficients ck ∈ R ≥ 0, c1 �= 0. Repla-

cing the diagonal matrix Δa in (9) by the scale identity matrix

aI we obtain a matrix polynomial (MP) in a. It is immediate

from (9) that the pth column of the resulting MP

M(a) =
K−1∑
k=1

ck

(
HH

k Hk − HH
k Hkak

)

=
K−1∑
k=1

ck

(
HH

k Hk − HH
k HkΔ

−k
a ak

)
(10)

is identical zero for a = ap, for p = 1, . . . , P and non-zero

otherwise. In other words, the MP M(a) becomes rank de-

ficient if a is identical to one of the true generators. Thus a

necessary condition for a to be a true generator is that a is a

root of the MP M(a). Conditions under which a root a of the

MP M(a) is also sufficient for a to be a true generator are

given in the following section. In practice the signal genera-

tor matrix H shall be estimated from the signal eigenvectors

US . From the covariance model (2) and its eigendecompositi-

on, it can readily be shown that the signal generator matrix H
and the signal eigenvectors US span the same P dimensional

signal subspace [1, 2]. Thus there exists a full-rank P × P
mixing matrix K such that H = USK. Multiplying the left

and the right side of M(a) with KH and K, respectively, we

obtain the MP

G(a) =
K−1∑
k=0

Gkak = KHM(a)K

=
K−1∑
k=1

ck

(
KHHH

k HkK−KHHH
k HkakK

)

=
K−1∑
k=1

ck

(
UH

S,kUS,k−UH
S,kUS,kak

)
(11)
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Here US,k =
(
JK,k ⊗ IL

)
US and US,k =

(
JK,k ⊗ IL

)
US

are the upper- and lower-kL-row-masked signal eigenvector

matrices of dimensions KL × P that result from U s from

masking (setting the entries to zero) the upper and lower

(K − k)L rows of the signal eigenvector matrix US , respec-

tively. Since K is non-singular the rank properties of M(a)
translate directly to G(a), i.e. G(a) becomes rank deficient

if a is identical to one of the true generators. Thus the true

generators a1, . . . , aP can be determined as the roots of the

MP (11).

In this contribution we focus only on the estimation of the

generators a1, . . . , aP . However, it is important to note that

if the generators along the a-axis are known (or estimated)

then the mixing matrix K and the corresponding generators

along the b-axis, hence the entries of the matrix B, can also

be estimated from relation (11). We refer to [7, 8] for details.

4. UNIQUENESS CONDITIONS

Theorem 1: Provided that H1 is full column rank and

c1 ≥ c2 ≥ . . . ≥ cK−1 ≥ 0; c1 > 0 (12)

then the P×P matrix polynomials M(a) and G(a) evaluated

inside and on the unit-circle (e.g. for |a| ≤ 1) become singu-

lar if and only if a corresponds to one of the true generators

a1, . . . , aP .

Proof of Theorem 1: The MP in (10) factorizes as

M(a) =

(
K−1∑
k=1

k−1∑
m=0

ckHH
k HkΔ

−m
a am

)(
I−Δ−1

a a
)

= W (a)
(
I − Δ−1

a a
)

(13)

The right MP in the factorization (13), i.e.
(
I − Δ−1

a a
)
, be-

comes singular if and only if a is equal to one of the true

generators a1, . . . , aP . Next we show that the left MP in (13)

is positive definite and therefore non-singular for |a| ≤ 1. To-

wards this aim we rewrite W (a) as

W (a) =
K−1∑
k=1

k−1∑
m=0

ckHH
k HkΔ

−m
a am

= HH
1 [LK−1(a) ⊗ IL]H1 (14)

where CK−1 =
∑K−1

k=1 ckJK−1,k

∑k−1
m=0 DK−1,m, the

(K − 1) × (K − 1) matrix DK−1,m lower diagonal with

all entries equal zero and the entries on the mth lower sub-

diagonal equal to one, and

LK−1(a) = CK−1 ⊗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

a 1
. . .

...

a2 a 1
. . .

...
...

. . .
. . .

. . . 0
aK−2 · · · a2 a 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The matrix W (a) is positive definite if its Hermitian part is

positive definite [9]. Hence

xH
(
W (a) + W H(a)

)
x =

xHHH
1

[(
LK−1(a)+LH

K−1(a)
)
⊗ IL

]
H1x =

x̃H
[(

LK−1(a)+LH
K−1(a)

)
⊗ IL

]
x̃ > 0 (16)

for any x �= 0 ∈ C
P×1 and x̃ = H1x. In equation (16) we

made us of the fact that H1 has full-column rank. From (16)

we observe that the Hermitian part of W (a) is positive defi-

nite if the Hermitian matrix
(
LK−1(a) + LH

K−1(a)
)
⊗ IL

is positive definite, which itself is positive definite if the Her-

mitian matrix L̄K−1(a) = LK−1(a) + LH
K−1(a) is positive

definite [9]. In fact it can be proven that L̄K−1(a) > 0 for

|a| ≤ 1 provided that the weighting coefficients c1,. . .,cK−1

satisfy condition (12). (The proof of this statement is based

on Gaussian elimination and follows from induction argu-

ment. Here we needs to be skipped the proof due to space

limitations. It will be included in an accompanying journal

paper.) It immediately follows that the Hermitian part of

W (a) and therefore MP W (a) itself are positive definite

(and therefore non-singular) inside and on the unit-circle and

for c1 ≥ c2,≥, cK−1 ≥ 0. Hence from the factorization in

(13) and with (11) we finally prove theorem 1. �
Remarks: 1.) The condition that HK−1 has full column

rank implies that P < (K − 1)L. 2.) Condition (12) en-

sures that the coefficients Gk of the MP in (11) are ar-

ranged in decreasing order in the sense that G0 ≥ G1 ≥
. . . ≥ GK−1. This can be easily verified from the definiti-

ons G0 =
∑K−1

k=1 ckUH
S,kUS,k and Gk = ckUH

S,kUS,k for

k = 1, . . . , K. 3.) Appropriate choices for the weights ck

in (12) allow us transit seamless between the different shift

invariance approaches. More specific, in the limiting cases,

for the choice c1 = 1 and c2 = c3 = . . . = cK−1 = 0
we obtain the classical ESPRIT algorithm that exploits on-

ly a SI approach [1]. On the other hand, for the choice

c1 = c2 = . . . = cK−1 = 1 we obtain the unweighted

MI-root ESPRIT algorithm described in [7].

5. IMPLEMENTATION

The WMI-root ESPRIT algorithm for estimating the genera-

tors a1, . . . , aP is performed in the following steps.

Step 1: Compute the sample covariance matrix R̂ of (3) and

determine the associated signal eigenvectors ÛS .

Step 2: Compute of the sample version of the MP in (11) as

Ĝ(a) =
K−1∑
k=1

ck

(
Û

H

S,kÛS,k−Û
H

S,kÛS,kak
)

(17)

for ÛS,k =
(
JK,k ⊗ IL

)
ÛS and ÛS,k =

(
JK,k ⊗ IL

)
ÛS .

Step 3: Determine the P smallest roots â1, . . . , âP of Ĝ(a)
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Fig 1: RMSA of a versus SNR

e.g. from the P smallest generalized eigenvalues of the block-

companion matrix pair associated with Ĝ(a) [9, 8].

Remark: As mentioned previously above, the coefficients Gk

of of the MP in (11) are arranged in decreasing order G0 ≥
G1 ≥ . . . ≥ GK−1. Thus from a numerical point of view it

is more convenient to compute the roots of the reverse poly-

nomial, i.e. Grev(a) = aK−1G(1/a) =
∑K−1

k=0 GK−1−kak

and then estimate the true generator from the inverse of the P
largest roots of the reverse MP.

6. SIMULATION RESULTS

We compare the estimation performance of the classical SI-

root ESPRIT [1] with the weighted WMI-root ESPRIT algo-

rithm for equal weights c1, . . . , cK−1 and for linearly decrea-

sing weights (between 1 and 0.1). We assume two 2D damped

harmonics with parameters given as a1 = 0.801 + 0.391j,

a2 = 0.838+0.356j, b1 = 0.681+0.532j and b2 = 0.692+
0.623j. The sample support is K = 8, L = 8 and N = 100.

The root-mean-square errors (RMSEs) of the estimated real

part of the generators â1 and â2 are averaged and plotted ver-

sus the SNR in Figs. 1. All results are averaged over 100 inde-

pendent simulation runs and compared to the corresponding

Cramer-Rao bound (CRB). From the simulation we observe

that the proposed algorithm performs equally well for uniform

and for linear weighting, with slight preference to uniform

weighing. Further the WMI root-ESPRIT outperforms the SI

root-ESPRIT both for the uniform and the linearly decreasing

weighting case.

7. CONCLUSIONS

In this paper a novel algorithm for estimating (MD) damped

harmonics has been proposed that exploits multiple invarian-

ce contained in the data model. Unlike previous methods that

rely on joint eigendecomposition of multiple shift invarian-

ce matrices, a different approach is taken here. The invarian-

ce matrices for different shifts are combined by a weighted

summation after appropriate matrix multiplication. The dam-

ped harmonics are then obtained from the roots of a matrix

polynomial. Necessary and sufficient conditions are derived

that ensure uniqueness of the parameter estimation and reveal

a seamless link between rooting-based harmonic estimation

methods that exploit multiple invariance and (joint) eigende-

composition based methods that only exploit a single-shift in-

variance.
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