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ABSTRACT
In this paper, we investigate the performance of multiple-

input multiple-output (MIMO) multi-channel beamforming

(MB) systems in double-scattering channels. In particular, we

first derive new expressions for the marginal ordered eigen-

value distributions of the double-scattering channel matrices.

Based on these results, we present analytical expressions for

the symbol error rate of MIMO MB. It is demonstrated that

MB sub-channels can achieve full spatial diversity even in

the presence of double scattering, if the number of effective

scatterers is greater than or equal to the maximum number of

transmit and receive antennas.

Index Terms— Beamforming, eigenvalues, distribution

1. INTRODUCTION

Multiple-input multiple-output (MIMO) multi-channel beam-

forming (MB) systems, designed to transmit along the eigen-

directions of the MIMO channel, have been shown to be the

optimal linear solution under many performance criteria of in-

terest [1]. The performance of MIMO MB depends directly

on the statistical characteristics of the ordered eigenvalues of

the random MIMO channel matrix. This has recently led re-

searchers to study the ordered eigenvalue distributions of var-

ious classes of MIMO channel models (see eg. [2–5]).

Existing work in this area, however, has focused mainly

on channel scenarios for which the scattering is rich enough

to render full-rank channel matrices. Recently, it has been

shown that the channel may in fact exhibit rank-deficient

behavior, due to a lack of physical scattering. This has

led to the development of the double-scattering model [6].

This model, described by a product of complex random ma-

trices, is a generalized representation which embraces the

rich-scattering (eg. uncorrelated Rayleigh) and completely

rank-deficient (ie. pinhole) channel as special cases. For the

double-scattering model, there are currently very few prior

results. In the context of MIMO MB, the only related results

are presented in [7–9], which considered the special case of

single-channel beamforming.

In this paper, we investigate the performance of MIMO

MB under double-scattering channels with spatial correlation
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at the receiver (or transmitter). Based on the new Cauchy-

Binet Formula [5], we extend the marginal distribution of un-

ordered eigenvalue [10] and the largest eigenvalue [7, 9] to

that of all ordered eigenvalues. In particular, we derive ex-

act and asymptotic expressions for the marginal cumulative

distribution functions (CDF) of all the ordered eigenvalues of

the double-scattering channel model. Based on these CDFs,

the analytical symbol error rate (SER) is also presented. Our

results demonstrate that full diversity order is achieved even

in the presence of double-scattering as long as the number of

scatterers is not less than the maximum number of transmit

and receive antennas.

2. CHANNEL MODEL AND PROBLEM
FORMULATION

We consider double-scattering channels with spatial correla-

tion at either the transmitter or receiver. Note that, due to

the reciprocity of MIMO channel, correlation at either the re-

ceiver or transmitter is equivalent. As a result, we only con-

sider receive correlation in the paper. The channel model is

H =
1√
Ns

Σ1/2H1H2 (1)

where H1 ∈ C
Nr×Ns and H2 ∈ C

Ns×Nt are mutually in-

dependent complex Gaussian matrices with independent and

identically distributed (i.i.d.), zero-mean, unit-variance ele-

ments, and Σ ∈ C
Nr×Nr is a Hermitian positive definite ma-

trix. Nr and Nt denote the numbers of receive and transmit

antennas, Ns denotes the number of effective scatterers, and

we also use the following notations:

W 1 = HH
1 ΣH1

W 2 = NsH
HH = HH

2 W 1H2

S = min(Nr, Ns), T = max(Nr, Ns)
M = min(S,Nt), N = max(S,Nt)
σ = (σ1, . . . , σNr

) = eigs(Σ), σ1 ≥ · · · ≥ σNr

η = (η1, . . . , ηS) = eigs(W 1), η1 ≥ · · · ≥ ηS

λ = (λ1, . . . , λM ) = eigs(W 2), λ1 ≥ · · · ≥ λM

where eigs(A) denote the non-zero ordered eigenvalues of A.

For a MIMO MB system, the received vector is given by

s = HPd + n, (2)
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where H ∈ C
Nr×Nt is defined in (1), P ∈ C

Nt×L is the

pre-coding matrix which maps the L ≤ M modulated data

symbols d = (d1, . . . , dL)T onto the Nt transmit antennas,

and n = (n1, . . . , nNr
) is an additive white Gaussian noise

(AWGN) vector, with elements having zero mean and unit

variance. We assume that each modulated symbol has fixed

power ρk (k = 1, . . . , L), and that perfect channel state infor-

mation is available at both the transmitter and receiver. By

weighting the received vector s with a (spatial) equalizing

matrix Q ∈ C
Nr×L, we get the statistic decision variables

d̂ = QHs, where d̂ = (d̂1, . . . , d̂L). It is shown in [1] that

by choosing the eigenvectors corresponding to the L largest

eigenvalues of HHH as the columns of the pre-coding and

equalizing matrices, the MIMO channel can be decomposed

into L parallel scalar (eigen-mode) sub-channels. Each of

these sub-channels is described by

d̂k =
√

λk dk/Ns + nk, k = 1, . . . , L (3)

The instantaneous signal-to-noise-ratio (SNR) of each sub-

channel is

γk = ρkλk/Ns, k = 1, . . . , L. (4)

Obviously, the MIMO MB system performance depends di-

rectly on the marginal distribution of the ordered eigenvalues

λk. These will be derived in the following section.

3. EIGENVALUE DISTRIBUTIONS OF
DOUBLE-SCATTERING CHANNELS

We start by deriving the joint probability density function

(PDF) of λ. This will be used subsequently to derive the

marginal CDFs of the ordered eigenvalues λk, k = 1, . . . , M .

Lemma 1 (Joint PDF). (x1 ≥ . . . ≥ xM ≥ 0)

fλ(x) =K1K2 |KNr (x,σ)| |V M (x)|
∏M

i=1
xN−S

i (5)

where

K1 =
(−1)(Nr−S)(Nr+S−1)/2[∏S

i=1(Ns − i)!
] [∏Nr

i=1 σNs
i

]
|UNr

(σ)|

K2 =
(−1)(S−M)(S+M−1)/2∏M

i=1(Nt − i)!

{UNr
(σ)}i,j = (−1/σi)j−1, i, j = 1, . . . , Nr.

{V M (x)}i,j = xj−1
i , i, j = 1, . . . , M.

{KNr
(x,σ)}i,j =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(σixj)(Ns−Nt)/2KNs−Nt(2
√

xj/σi),
i = 1, . . . , Nr; j = 1, . . . , M.

(−1)S−jσT+j−Nr−Nt

i (T + j − Nr − Nt − 1)!,
i = 1, . . . , Nr; j = M + 1, . . . , S.

(−1/σi)Nr−j ,
i = 1, . . . , Nr; j = S + 1, . . . , Nr.

where Ka(x) is the modified Bessel function of the second
kind [11].

Proof. See Appendix A for a sketch of the proof.

Theorem 1 (Marginal CDF). (z ≥ 0, 1 ≤ k ≤ M )

Fλk
(z) = K1K2

k−1∑
l=0

∑
β1<···<βk−l−1
βk−l<···<βM

|ΥNr
(z, β)| (6)

where the second summation is over the combination of
(β1 < · · · < βk−l−1) and (βk−l < · · · < βM ), with
β = (β1, . . . , βM ) being a permutation of (1, . . . , M),
and ΥNr (z, β) is given in (7) at the top of next page, with
i, j = 1, . . . , Nr.

Proof. See Appendix B for a sketch of the proof.

In addition to the exact expressions for the marginal or-

dered eigenvalue CDFs, it is also of importance to consider

asymptotic expansions of the CDFs around the origin.

Theorem 2 (Asymptotic Expression). (z ≥ 0, 1 ≤ k ≤ M)

Fλk
(z) = ckz(N+1−k)(M+1−k)+o(z(N+1−k)(M+1−k)) (8)

where ck is a positive constant.

Proof. Omitted due to space constraint. The proof will be

presented in an extended journal version of this paper.

4. PERFORMANCE ANALYSIS OF MIMO MB
SYSTEMS IN DOUBLE-SCATTERING

The average SER of many general modulation formats

(BPSK, BFSK, M -PAM, etc.) can be expressed as [2]

SER = Eγ

[
aQ(

√
2bγ)

]
, where γ is the average receive

SNR, Q(·) is the Gaussian Q-function, and a and b are

modulation-specific constants (eg. for BPSK, a = 1, b = 1).

Thus, the SER of the k-th sub-channel of MIMO MB can be

expressed as (k = 1, . . . , L)

SERk =
a
√

b

2
√

π

∫ ∞

0

x−1/2e−bxFλk
(Ns x/ρk) dx . (9)

Substituting (6) into (9), we obtain the analytical SER of each

sub-channel. Evaluating a closed-form solution for the above

expression seems difficult, however, Eq. (9) can be evalu-

ated numerically, which is more efficient than by using Monte

Carlo simulation methods. Additionally, since independent

symbols are sent on each sub-channel, the global SER (i.e.,

the average SER of all sub-channels) can be obtained as [2]:

SERglobal =
∑L

k=1 SERk/L.

To obtain further insights, we now investigate the sub-

channel SER at high SNR. For (9), it is obvious that as ρk →
∞, the SER is dominated by the behavior of Fλk

(z) around

the origin (i.e., z = 0). As such, substituting (8) into (9),
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{ΥNr (z, β)}i,j =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N − S + j − 1)!
N−S+j−1∑

p=0

2 σ
(Ns−Nt+N−S+j−p)/2
i

p! z
Ns−Nt+N−S+j+p

2 KNs−Nt+N−S+j−p

(
2
√

z/σi

)
, j = β1, . . . , βk−l−1.

(N − S + j − 1)!
[
σNs−Nt+N−S+j

i (Ns − Nt + N − S + j − 1)!

−
N−S+j−1∑

p=0

2 σ
(Ns−Nt+N−S+j−p)/2
i

p! z
Ns−Nt+N−S+j+p

2 KNs−Nt+N−S+j−p

(
2
√

z/σi

)]
, j = βk−l, . . . , βM .

(−1)S−jσT+j−Nr−Nt

i (T + j − Nr − Nt − 1)!, j = M + 1, . . . , S.
(−1/σi)Nr−j , j = S + 1, . . . , Nr.

(7)

we have the following result on the diversity order of the k-th

sub-channel (k = 1, . . . , L)

dk = (N + 1 − k)(M + 1 − k). (10)

It was shown that [2], for the Nr × Nt MIMO MB systems

under rich (ie. full-rank) scattering, the diversity order of the

k-th sub-channel is dk = (Nr + 1 − k)(Nt + 1 − k). Here,

we find that if the number of effective scatterers is greater

than or equal to the maximum number of transmit and receive

antennas (i.e., Ns ≥ max(Nr, Nt)), then each sub-channel

achieves the same (maximum possible) diversity order, even

in the presence of double scattering.

Next, numerical simulations are carried out to verify our

derivations. The following channel is used to give a simple

example: Nr = 2, Ns = 5, Nt = 3. Since the result in this

paper can be applied to arbitrary correlation, here we use the

exponential correlation model [12] to give a simple illustra-

tion, i.e., {Σ}i,j = δ|i−j| for δ ∈ [0, 1), i, j = 1, . . . , Nr.

The SER of each sub-channel of a MIMO MB system is plot-

ted in Fig. 1, where coherent BPSK and equal power alloca-

tion are assumed. The analytical results are calculated from

(9), while the simulated curves are generated based on 106

channel realizations. As Fig. 1 illustrates, the two results fit

very well. Furthermore, diversity orders of 6 and 2 are ob-

served, as predicted by (10).

5. CONCLUSION

We investigated the performance of MIMO MB systems

under double-scattering channels. Our results were based

on new expressions which we presented for the marginal

CDFs of the ordered eigenvalues of the double-scattering

random channel matrix. We presented analytical SER ex-

pressions, and demonstrated the interesting result that if

Ns ≥ max(Nr, Nt), then full diversity order is obtained

even in the presence of double-scattering.

A. PROOF SKETCH OF LEMMA 1

Lemma 2 ( [13], [14]). Let W = HH
w ΘHw, (where Hw ∈

C
r×t is a complex Gaussian matrix with statistically inde-

pendent, zero-mean, unit-variance elements, Θ ∈ C
r×r is
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Fig. 1. Sub-channel SER of the MIMO MB system (δ = 0.5)

a Hermitian, positive definite, deterministic matrix), m =
min(r, t), and n = max(r, t). Also, let w = (w1, . . . , wm)
and θ = (θ1, . . . , θr) denote the non-zero ordered eigenval-
ues of W and Θ, respectively. Then, the joint PDF of w can
be expressed as (x1 ≥ · · · ≥ xm ≥ 0)

fw(x) = K |Er(x,θ)| |V m(x)|
∏m

i=1
xn−r

i (11)

where

K =
(−1)(r−m)(r+m−1)/2

[
∏m

i=1(t − i)!] [
∏r

i=1 rt
i ] |U r(r)|

{U r(θ)}i,j = (−1/θi)j−1, i, j = 1, . . . , r.

{V m(x)}i,j = xj−1
i , i, j = 1, . . . , m.

{Er(x,θ)}i,j =
{

e−xj/θi , i = 1, . . . , r; j = 1, . . . , m.
(−1

θi
)r−j , i = 1, . . . , r; j = m + 1, . . . , r.

Lemma 2 is a simple unification of the results of [13] and

[14]. Specifically, if r ≤ t, it reduces to (17) of [13]; if r > t,
it reduces to (25) of [14] (after some algebraic manipulations).

Given Lemma 2, we can derive the joint distribution of λ by

applying the following three steps:
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(i) Obtain the joint PDF of the non-zero ordered eigenvalues

η of W 1 by directly applying Lemma 2;

(ii) Evaluate the joint PDF of λ, conditioned on η. To this

end, note that if W 1 is rank deficient, (i.e., Nr < Nt), one

can prove that λ are the eigenvalues of H̃
H

2 DW 1H̃2, where

DW 1 = diag(η), H̃2 ∈ C
Nt×S is a complex Gaussian ma-

trix with i.i.d., zero-mean, unit-variance elements. Thus, the

joint PDF of λ, conditioned on η, can again be obtained via

application of Lemma 2.

(iii) Evaluate the unconditional joint PDF of λ by integrating

the conditional PDF from Step (ii) with respect to the distri-

bution of η from Step (i). This integration can be carried out

with the help of the generalized Cauchy-Binet type integral

identities (see eg. [13]).

B. PROOF SKETCH OF THEOREM 1

According to the definition of the marginal CDF, we have

Fλk
(z) = Pr(z ≥ λk) =

k−1∑
l=0

Pr(λ1 ≥ · · · ≥ λk−l−1 ≥ z

≥ λk ≥ · · · ≥ λm ≥ 0) =
k−1∑
l=0

∫
Dl

fλ(x) dx (12)

where Dl = {∞ > x1 ≥ · · · ≥ xk−l−1 ≥ z ≥ xk−l ≥ · · · ≥
xm ≥ 0}. Next, we use the new generalized Cauchy-Binet

formula from [5, Lemma 1] to integrate as follows∫
Dl

fλ(x) dx =
∑

β1<···<βk−l−1
βk−l<···<βM∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ ∞
z

2(σix)(Ns−Nt)/2KNs−Nt
(2

√
x/σi)xN−S+j−1 dx,

j = β1, . . . , βk−l−1.∫ z

0
2(σix)(Ns−Nt)/2KNs−Nt

(2
√

x/σi)xN−S+j−1 dx,
j = βk−l, . . . , βM .

(−1)S−jσT+j−Nr−Nt

i (T + j − Nr − Nt − 1)!,
j = M + 1, . . . , S.

(−1/σi)Nr−j , j = S + 1, . . . , Nr.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Combining [11, Eq. (8.432.6)] and [11, Eq. (8.350.1)], we

evaluate closed-form solutions for the remaining integrals in

the above equation, which completes the proof.
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